Plug-in marginal estimation under a general regression model with missing responses and covariates

被引:3
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Gonzalez-Manteiga, Wenceslao [5 ]
Perez-Gonzalez, Ana [6 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[5] Univ Santiago de Compostela, Fac Math, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Campus Sur, Santiago De Compostela 15706, Spain
[6] Univ Vigo, Dept Estadist & Invest Operat, Campus Orense,Campus Univ As Lagoas S-N, Orense 32004, Spain
关键词
Fisher consistency; Kernel weights; L-estimators; Marginal functionals; Missing at random; Semiparametric models; NONPARAMETRIC-ESTIMATION; EFFICIENT ESTIMATION; INFERENCE; QUANTILES; FUNCTIONALS;
D O I
10.1007/s11749-018-0591-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any -quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
引用
下载
收藏
页码:106 / 146
页数:41
相关论文
共 50 条
  • [21] Estimation of parameters of logistic regression with covariates missing separately or simultaneously
    Tran, Phuoc-Loc
    Le, Truong-Nhat
    Lee, Shen-Ming
    Li, Chin-Shang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (06) : 1981 - 2009
  • [22] Estimation in zero-inflated binomial regression with missing covariates
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    STATISTICS, 2019, 53 (04) : 839 - 865
  • [23] On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
    Liu, Zejian
    Raskutti, Garvesh
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [24] Diagnostic measures for the Cox regression model with missing covariates
    Zhu, Hongtu
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    BIOMETRIKA, 2015, 102 (04) : 907 - 923
  • [25] Optimal regression parameter-specific shrinkage by plug-in estimation
    Jung, Yoonsuh
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (18) : 4490 - 4505
  • [26] Validation likelihood estimation method for a zero-inflated Bernoulli regression model with missing covariates
    Lee, Shen-Ming
    Pho, Kim-Hung
    Li, Chin-Shang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 214 : 105 - 127
  • [27] Nonparametric regression with responses missing at random and the scale depending on auxiliary covariates
    Jiang, Tian
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (02) : 302 - 322
  • [28] Model checking for a general linear model with nonignorable missing covariates
    Sun, Zhi-hua
    Ip, Wai-Cheung
    Wong, Heung
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (01): : 99 - 110
  • [29] Model checking for a general linear model with nonignorable missing covariates
    Zhi-hua Sun
    Wai-Cheung Ip
    Heung Wong
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 99 - 110
  • [30] Model Checking for a General Linear Model with Nonignorable Missing Covariates
    Zhihua SUN WaiCheung IP Heung WONG School of Mathematical sciences Graduate University of Chinese Academy of Sciences Beijing China Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Department of Applied Mathematics Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong China
    Acta Mathematicae Applicatae Sinica(English Series), 2012, 28 (01) : 99 - 110