Optimal regression parameter-specific shrinkage by plug-in estimation

被引:0
|
作者
Jung, Yoonsuh [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Bias-variance tradeoff; oracle property; shrinkage estimator; sparsity; tuning parameter; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; DIVERGING NUMBER; RIDGE REGRESSION; JAMES-STEIN; LASSO; REGULARIZATION; MODELS;
D O I
10.1080/03610926.2019.1602649
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
One benefit of the bias-variance tradeoff is that regression estimators do not have to be strictly unbiased. However, to take full advantage of allowing bias, shrinkage regression estimators require that the appropriate level of bias is chosen carefully. Because the conventional grid search for the shrinkage parameters requires heavy computation, it is practically difficult to incorporate more than two shrinkage parameters. In this paper, we propose a class of shrinkage regression estimators which differently shrink each regression parameter. For this purpose, we set the number of shrinkage parameters to be the same as the number of regression coefficients. The ideal shrinkage for each parameter is suggested, meaning that a burdensome tuning process is not required for each parameter. The -consistency and oracle property of the suggested estimators are established. The application of the proposed methods to simulated and real data sets produces the favorable performance of the suggested regression shrinkage methods without the need for a grid search of the entire parameter space.
引用
收藏
页码:4490 / 4505
页数:16
相关论文
共 50 条
  • [1] Geographically weighted regression with parameter-specific distance metrics
    Lu, Binbin
    Brunsdon, Chris
    Charlton, Martin
    Harris, Paul
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2017, 31 (05) : 982 - 998
  • [2] A comment on geographically weighted regression with parameter-specific distance metrics
    Oshan, Taylor
    Wolf, Levi John
    Fotheringham, A. Stewart
    Kang, Wei
    Li, Ziqi
    Yu, Hanchen
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (07) : 1289 - 1299
  • [3] OPTIMAL PLUG-IN ESTIMATORS FOR NONPARAMETRIC FUNCTIONAL ESTIMATION
    GOLDSTEIN, L
    MESSER, K
    ANNALS OF STATISTICS, 1992, 20 (03): : 1306 - 1328
  • [4] Calibrating a Geographically Weighted Regression Model with Parameter-Specific Distance Metrics
    Lu, Binbin
    Harris, Paul
    Charlton, Martin
    Brunsdon, Chris
    SPATIAL STATISTICS CONFERENCE 2015, PART 1, 2015, 26 : 109 - 114
  • [5] A response to "A comment on geographically weighted regression with parameter-specific distance metrics'
    Lu, Binbin
    Brunsdon, Chris
    Charlton, Martin
    Harris, Paul
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (07) : 1300 - 1312
  • [6] Bayesian estimation of the shrinkage parameter in ridge regression
    Firinguetti-Limone, Luis
    Pereira-Barahona, Manuel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3314 - 3327
  • [7] On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
    Liu, Zejian
    Raskutti, Garvesh
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [8] Shrinkage estimation for the regression parameter matrix in multivariate regression model
    Chitsaz, Shabnam
    Ahmed, S. Ejaz
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2012, 82 (02) : 309 - 323
  • [9] Plug-in method for nonparametric regression
    Jan Koláček
    Computational Statistics, 2008, 23 : 63 - 78
  • [10] Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths
    Lu, Binbin
    Yang, Wenbai
    Ge, Yong
    Harris, Paul
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2018, 71 : 41 - 57