High-Fidelity Bidirectional Nuclear Qubit Initialization in SiC

被引:16
|
作者
Ivady, Viktor [1 ,2 ]
Klimov, Paul V. [3 ]
Miao, Kevin C. [3 ]
Falk, Abram L. [3 ,4 ]
Christle, David J. [3 ]
Szasz, Krisztian [2 ]
Abrikosov, Igor A. [1 ,5 ]
Awschalom, David D. [3 ]
Gali, Adam [2 ,6 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[2] Hungarian Acad Sci, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[3] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA
[4] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[5] Natl Univ Sci & Technol MISIS, Mat Modeling & Dev Lab, Moscow 119049, Russia
[6] Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
基金
瑞典研究理事会;
关键词
SPIN QUBITS; COHERENT CONTROL; SILICON-CARBIDE; CENTERS; STATE;
D O I
10.1103/PhysRevLett.117.220503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we theoretically demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled electron spin-nuclear spin systems. Furthermore, we theoretically and experimentally show that the nuclear spin polarization can be reversed by magnetic field variations as small as 0.8 Gauss. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-fidelity one-qubit operations under random telegraph noise
    Möttönen, M
    de Sousa, R
    Zhang, J
    Whaley, KB
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [32] High-fidelity gates and mid-circuit erasure conversion in an atomic qubit
    Shuo Ma
    Genyue Liu
    Pai Peng
    Bichen Zhang
    Sven Jandura
    Jahan Claes
    Alex P. Burgers
    Guido Pupillo
    Shruti Puri
    Jeff D. Thompson
    Nature, 2023, 622 : 279 - 284
  • [33] High-fidelity trapped-ion qubit operations with scalable photonic modulators
    C. W. Hogle
    D. Dominguez
    M. Dong
    A. Leenheer
    H. J. McGuinness
    B. P. Ruzic
    M. Eichenfield
    D. Stick
    npj Quantum Information, 9
  • [34] High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements
    Hume, D. B.
    Rosenband, T.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2007, 99 (12)
  • [35] High-fidelity gates and mid-circuit erasure conversion in an atomic qubit
    Ma, Shuo
    Liu, Genyue
    Peng, Pai
    Zhang, Bichen
    Jandura, Sven
    Claes, Jahan
    Burgers, Alex P.
    Pupillo, Guido
    Puri, Shruti
    Thompson, Jeff D.
    NATURE, 2023, 622 (7982) : 279 - +
  • [36] High-fidelity state detection and tomography of a single-ion Zeeman qubit
    Keselman, A.
    Glickman, Y.
    Akerman, N.
    Kotler, S.
    Ozeri, R.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [37] High-fidelity trapped-ion qubit operations with scalable photonic modulators
    Hogle, C. W.
    Dominguez, D.
    Dong, M.
    Leenheer, A.
    McGuinness, H. J.
    Ruzic, B. P.
    Eichenfield, M.
    Stick, D.
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [38] High-Fidelity and Ultrafast Initialization of a Hole Spin Bound to a Te Isoelectronic Center in ZnSe
    St-Jean, P.
    Ethier-Majcher, G.
    Andre, R.
    Francoeur, S.
    PHYSICAL REVIEW LETTERS, 2016, 117 (16)
  • [39] Atomic Engineering of Molecular Qubits for High-Speed, High-Fidelity Single Qubit Gates
    Jones, Michael T.
    Monir, Md Serajum
    Krauth, Felix N.
    Macha, Pascal
    Hsueh, Yu-Ling
    Worrall, Angus
    Keizer, Joris G.
    Kranz, Ludwik
    Gorman, Samuel K.
    Chung, Yousun
    Rahman, Rajib
    Simmons, Michelle Y.
    ACS NANO, 2023, 17 (22) : 22601 - 22610
  • [40] High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits
    Xu, Yuan
    Chu, Ji
    Yuan, Jiahao
    Qiu, Jiawei
    Zhou, Yuxuan
    Zhang, Libo
    Tan, Xinsheng
    Yu, Yang
    Liu, Song
    Li, Jian
    Yan, Fei
    Yu, Dapeng
    PHYSICAL REVIEW LETTERS, 2020, 125 (24)