High-fidelity trapped-ion qubit operations with scalable photonic modulators

被引:0
|
作者
C. W. Hogle
D. Dominguez
M. Dong
A. Leenheer
H. J. McGuinness
B. P. Ruzic
M. Eichenfield
D. Stick
机构
[1] Sandia National Laboratories,Research Laboratory of Electronics
[2] The MITRE Corporation,Wyant College of Optical Sciences
[3] Massachusetts Institute of Technology,undefined
[4] University of Arizona,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Experiments with trapped ions and neutral atoms typically employ optical modulators in order to control the phase, frequency, and amplitude of light directed to individual atoms. These elements are expensive, bulky, consume substantial power, and often rely on free-space I/O channels, all of which pose scaling challenges. To support many-ion systems like trapped-ion quantum computers or miniaturized deployable devices like clocks and sensors, these elements must ultimately be microfabricated, ideally monolithically with the trap to avoid losses associated with optical coupling between physically separate components. In this work we design, fabricate, and test an optical modulator capable of monolithic integration with a surface-electrode ion trap. These devices consist of piezo-optomechanical photonic integrated circuits configured as multi-stage Mach-Zehnder modulators that are used to control the intensity of light delivered to a single trapped ion on a separate chip. We use quantum tomography employing hundreds of multi-gate sequences to enhance the sensitivity of the fidelity to the types and magnitudes of gate errors relevant to quantum computing and better characterize the performance of the modulators, ultimately measuring single qubit gate fidelities that exceed 99.7%.
引用
收藏
相关论文
共 50 条
  • [1] High-fidelity trapped-ion qubit operations with scalable photonic modulators
    Hogle, C. W.
    Dominguez, D.
    Dong, M.
    Leenheer, A.
    McGuinness, H. J.
    Ruzic, B. P.
    Eichenfield, M.
    Stick, D.
    [J]. NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [2] High-fidelity simultaneous detection of a trapped-ion qubit register
    Zhukas, Liudmila A.
    Svihra, Peter
    Nomerotski, Andrei
    Blinov, Boris B.
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [3] High-fidelity readout of trapped-ion qubits
    Myerson, A. H.
    Szwer, D. J.
    Webster, S. C.
    Allcock, D. T. C.
    Curtis, M. J.
    Imreh, G.
    Sherman, J. A.
    Stacey, D. N.
    Steane, A. M.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (20)
  • [4] High-Fidelity Indirect Readout of Trapped-Ion Hyperfine Qubits
    Erickson, Stephen D.
    Wu, Jenny J.
    Hou, Pan-Yu
    Cole, Daniel C.
    Geller, Shawn
    Kwiatkowski, Alex
    Glancy, Scott
    Knill, Emanuel
    Slichter, Daniel H.
    Wilson, Andrew C.
    Leibfried, Dietrich
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [5] High-fidelity transport of trapped-ion qubits in a multilayer array
    Palani, Deviprasath
    Hasse, Florian
    Kiefer, Philip
    Boeckling, Frederick
    Schroeder, Jan-Philipp
    Warring, Ulrich
    Schaetz, Tobias
    [J]. PHYSICAL REVIEW A, 2023, 107 (05)
  • [6] Simple trapped-ion architecture for high-fidelity Toffoli gates
    Borrelli, Massimo
    Mazzola, Laura
    Paternostro, Mauro
    Maniscalco, Sabrina
    [J]. PHYSICAL REVIEW A, 2011, 84 (01):
  • [7] Fast High-Fidelity Readout of a Single Trapped-Ion Qubit via Machine-Learning Methods
    Ding, Zi-Han
    Cui, Jin-Ming
    Huang, Yun-Feng
    Li, Chuan-Feng
    Tu, Tao
    Guo, Guang-Can
    [J]. PHYSICAL REVIEW APPLIED, 2019, 12 (01):
  • [8] High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport
    Kaufmann, Peter
    Gloger, Timm F.
    Kaufmann, Delia
    Johanning, Michael
    Wunderlich, Christof
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (01)
  • [9] High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit
    Harty, T. P.
    Allcock, D. T. C.
    Ballance, C. J.
    Guidoni, L.
    Janacek, H. A.
    Linke, N. M.
    Stacey, D. N.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (22)
  • [10] Efficient motional-mode characterization for high-fidelity trapped-ion quantum computing
    Kang, Mingyu
    Liang, Qiyao
    Li, Ming
    Nam, Yunseong
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02):