SPECTRAL MULTIPLICITIES FOR ERGODIC FLOWS

被引:7
|
作者
Danilenko, Alexandre I. [1 ]
Lemanczyk, Mariusz [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Low Temp Phys & Engn, UA-61164 Kharkov, Ukraine
[2] Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
Ergodic flow; spectral multiplicities; SPACE;
D O I
10.3934/dcds.2013.33.4271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a subset of positive integers such that E boolean AND {1, 2} not equal empty set. A weakly mixing finite measure preserving flow T = (T-t)(t is an element of R) is constructed such that the set of spectral multiplicities (of the corresponding Koopman unitary representation generated by T) is E. Moreover, for each non-zero t is an element of R, the set of spectral multiplicities of the transformation T-t is also E. These results are partly extended to actions of some other locally compact second countable Abelian groups.
引用
收藏
页码:4271 / 4289
页数:19
相关论文
共 50 条
  • [31] Are atmospheric surface layer flows ergodic?
    Higgins, Chad W.
    Katul, Gabriel G.
    Froidevaux, Martin
    Simeonov, Valentin
    Parlange, Marc B.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) : 3342 - 3346
  • [32] On ergodic flows with simple Lebesgue spectrum
    Prikhod'ko, A. A.
    SBORNIK MATHEMATICS, 2020, 211 (04) : 594 - 615
  • [33] An ergodic theorem for flows on closed surfaces
    Ding, TR
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (06) : 669 - 676
  • [34] RUDOLPHS REPRESENTATION OF FILTERED ERGODIC FLOWS
    ARQUES, D
    GABRIEL, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (10): : 551 - 554
  • [35] On self-similarities of ergodic flows
    Danilenko, Alexandre I.
    Ryzhikov, Valery V.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 431 - 454
  • [36] Dimension and ergodic decompositions for hyperbolic flows
    Barreira, Luis
    Wolf, Christian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (01) : 201 - 212
  • [37] ERGODIC BEHAVIOR OF FLOWS ON HOMOGENEOUS SPACES
    STARKOV, AN
    DOKLADY AKADEMII NAUK SSSR, 1983, 273 (03): : 538 - 540
  • [38] Embedded surfaces with ergodic geodesic flows
    Burns, K
    Donnay, VJ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1509 - 1527
  • [39] ON THE DEVIATION OF ERGODIC AVERAGES FOR HOROCYCLE FLOWS
    Strombergsson, Andreas
    JOURNAL OF MODERN DYNAMICS, 2013, 7 (02) : 291 - 328
  • [40] Spectral multiplicities of infinite measure preserving transformations
    Danilenko, A. I.
    Ryzhikov, V. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 161 - 170