For conformal hyperbolic flows, we establish explicit formulas for the Hausdorff dimension and for the pointwise dimension of an arbitrary invariant measure. We emphasize that these measures are not necessarily ergodic. The formula for the pointwise dimension is expressed in terms of the local entropy and of the Lyapunov exponents. We note that this formula was obtained before only in the special case of (ergodic) equilibrium measures, and these always possess a local product structure (which is not the case for arbitrary invariant measures). The formula for the pointwise dimension allows us to show that the Hausdorff dimension of a (nonergodic) invariant measure is equal to the essential supremum of the Hausdorff dimension of the measures in an ergodic decomposition.
机构:
Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, PortugalInst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
Barreira, Luis
Doutor, Paulo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Monte De Caparica, PortugalInst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
机构:
Paris Univ, Sorbonne Univ, CNRS, IMJ,PRG,UMR 7586, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, FranceParis Univ, Sorbonne Univ, CNRS, IMJ,PRG,UMR 7586, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, France
Berger, Pierre
Bochi, Jairo
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, ChileParis Univ, Sorbonne Univ, CNRS, IMJ,PRG,UMR 7586, Campus Pierre & Marie Curie,4 Pl Jussieu, F-75252 Paris 05, France