A numerical approach to the generalized nonlinear fractional Fokker-Planck equation

被引:20
|
作者
Zhao, Zhengang [2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 201204, Peoples R China
关键词
Nonlinear fractional Fokker-Planck equation; Riemann-Liouville derivative; Levy flight; Fractional finite element method; ANOMALOUS DIFFUSION; DIFFERENTIAL-EQUATIONS; APPROXIMATION; DERIVATIVES; DYNAMICS;
D O I
10.1016/j.camwa.2012.01.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a fully discrete Galerkin finite element method to solve the generalized nonlinear fractional Fokker-Planck equation, which has a multi-fractional-spatial-operator characteristic that describes the Levy flight. In the time direction, we use the finite difference method, and in the spatial direction we use the fractional finite element method in the framework of the fractional Sobolev spaces. We derive a fully discrete scheme for the considered equation. We prove the existence and uniqueness of the discrete solution and give the error estimates. The numerical examples are also included which support the theoretical analysis. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3075 / 3089
页数:15
相关论文
共 50 条
  • [41] GENERALIZED FOKKER-PLANCK EQUATION IN SUPERRADIANCE THEORY
    GRABERT, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1975, 21 (01): : 99 - 103
  • [42] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [43] A numerical method for generalized Fokker-Planck equations
    Han, Weimin
    Li, Yi
    Sheng, Qiwei
    Tang, Jinping
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 171 - +
  • [44] Numerical Solution of Fokker-Planck Equation for Nonlinear Stochastic Dynamical Systems
    Narayanan, S.
    Kumar, Pankaj
    IUTAM SYMPOSIUM ON NONLINEAR STOCHASTIC DYNAMICS AND CONTROL, 2011, 29 : 77 - +
  • [45] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [46] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [47] FOKKER-PLANCK EQUATION APPLIED TO NONLINEAR SYSTEMS
    KRISTIANSSON, L
    ERICSSON TECHNICS, 1968, 24 (03): : 161 - +
  • [48] The Fokker-Planck equation for arbitrary nonlinear noise
    Kim, S
    Park, SH
    Ryu, CS
    PHYSICS LETTERS A, 1997, 230 (5-6) : 288 - 294
  • [49] Curl forces and the nonlinear Fokker-Planck equation
    Wedemann, R. S.
    Plastino, A. R.
    Tsallis, C.
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [50] Nonlinear Filter Based on the Fokker-Planck Equation
    Kumar, Mrinal
    Chakravorty, Suman
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (01) : 68 - 79