Nonlinear Filter Based on the Fokker-Planck Equation

被引:4
|
作者
Kumar, Mrinal [1 ]
Chakravorty, Suman [2 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[2] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
关键词
NUMERICAL-METHODS; PROJECTION;
D O I
10.2514/1.54070
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents a nonlinear filter based on the Fokker-Planck equation for uncertainty propagation coupled with a fast measurement update step. The measurement update is implemented as a function approximation performed on a Markov chain Monte Carlo sample of the unnormalized posterior obtained from the Bayes rule. Markov chain Monte Carlo sampling also results in fast computation of the normalization constant of the posterior, which is typically a computationally heavy step. For the propagation step, a previously developed semianalytical meshless tool is employed to solve the Fokker-Planck equation for high-dimensional systems in real time. Performance of the filter is studied for dynamical systems with two-, three-, and four-dimensional state spaces.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [1] A Nonlinear Filter Based on Fokker-Planck Equation
    Kumar, Mrinal
    Chakravorty, Suman
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 3136 - 3141
  • [2] FOKKER-PLANCK EQUATION APPLIED TO NONLINEAR SYSTEMS
    KRISTIANSSON, L
    [J]. ERICSSON TECHNICS, 1968, 24 (03): : 161 - +
  • [3] Numerical method for the nonlinear Fokker-Planck equation
    Zhang, DS
    Wei, GW
    Kouri, DJ
    Hoffman, DK
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 1197 - 1206
  • [4] The Fokker-Planck equation for arbitrary nonlinear noise
    Kim, S
    Park, SH
    Ryu, CS
    [J]. PHYSICS LETTERS A, 1997, 230 (5-6) : 288 - 294
  • [5] Stabilization of Solutions of the Nonlinear Fokker-Planck Equation
    Kon'kov A.A.
    [J]. Journal of Mathematical Sciences, 2014, 197 (3) : 358 - 366
  • [6] Curl forces and the nonlinear Fokker-Planck equation
    Wedemann, R. S.
    Plastino, A. R.
    Tsallis, C.
    [J]. PHYSICAL REVIEW E, 2016, 94 (06)
  • [7] Global solutions to a nonlinear Fokker-Planck equation
    Zhang, Xingang
    Liu, Zhe
    Ding, Ling
    Tang, Bo
    [J]. AIMS MATHEMATICS, 2023, 8 (07): : 16115 - 16126
  • [8] CRITICAL RELAXATION OF A NONLINEAR FOKKER-PLANCK EQUATION
    YAHATA, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1974, 52 (03): : 871 - 885
  • [9] NUMERICAL EXPERIENCES ON NONLINEAR FOKKER-PLANCK EQUATION
    BRAUN, JC
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (20): : 1178 - &
  • [10] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &