Efficient Pareto Frontier Exploration using Surrogate Approximations

被引:119
|
作者
Wilson, Benjamin [1 ]
Cappelleri, David [1 ]
Simpson, Timothy W. [1 ]
Frecker, Mary [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Pareto frontier; multiobjective optimization; approximation models; response surface; kriging;
D O I
10.1023/A:1011818803494
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we present an efficient and effective method of using surrogate approximations to explore the design space and capture the Pareto frontier during multiobjective optimization. The method employs design of experiments and metamodeling techniques (e.g., response surfaces and kriging models) to sample the design space, construct global approximations from the sample data, and quickly explore the design space to obtain the Pareto frontier without specifying weights for the objectives or using any optimization. To demonstrate the method, two mathematical example problems are presented. The results indicate that the proposed method is effective at capturing convex and concave Pareto frontiers even when discontinuities are present. After validating the method on the two mathematical examples, a design application involving the multiobjective optimization of a piezoelectric bimorph grasper is presented. The method facilitates multiobjective optimization by enabling us to efficiently and effectively obtain the Pareto frontier and identify candidate designs for the given design requirements.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 50 条
  • [11] A multi-objective framework for Pareto frontier exploration of lattice structures
    Tom De Weer
    Nicolas Lammens
    Karl Meerbergen
    Structural and Multidisciplinary Optimization, 2023, 66
  • [12] Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of pareto fronts
    Marjavaara, B. Daniel
    Lundstrom, T. Staffan
    Goel, Tushar
    Mack, Yolanda
    Shyy, Wei
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (09): : 1228 - 1240
  • [13] Efficient Frontier Detection and Management for Robot Exploration
    Senarathne, P. G. C. N.
    Wang, Danwei
    Wang, Zhuping
    Chen, Qijun
    2013 IEEE 3RD ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL AND INTELLIGENT SYSTEMS (CYBER), 2013, : 114 - +
  • [14] Topology optimization of a no-moving-part valve incorporating Pareto frontier exploration
    Yuki Sato
    Kentaro Yaji
    Kazuhiro Izui
    Takayuki Yamada
    Shinji Nishiwaki
    Structural and Multidisciplinary Optimization, 2017, 56 : 839 - 851
  • [15] Topology optimization of a no-moving-part valve incorporating Pareto frontier exploration
    Sato, Yuki
    Yaji, Kentaro
    Izui, Kazuhiro
    Yamada, Takayuki
    Nishiwaki, Shinji
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 56 (04) : 839 - 851
  • [16] Autonomous exploration and semantic mapping of a mobile robot using efficient frontier selection
    Kim H.S.
    Lee H.B.
    Journal of Institute of Control, Robotics and Systems, 2020, 26 (05) : 318 - 324
  • [17] The Pareto record frontier
    Fill, James Allen
    Naiman, Daniel Q.
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 24
  • [18] Visualizing the Pareto Frontier
    Lotov, Alexander V.
    Miettinen, Kaisa
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 213 - +
  • [19] Closest targets and minimum distance to the Pareto-efficient frontier in DEA
    Juan Aparicio
    José L. Ruiz
    Inmaculada Sirvent
    Journal of Productivity Analysis, 2007, 28 : 209 - 218
  • [20] Closest targets and minimum distance to the Pareto-efficient frontier in DEA
    Aparicio, Juan
    Ruiz, Jose L.
    Sirvent, Inmaculada
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2007, 28 (03) : 209 - 218