Visualizing the Pareto Frontier

被引:0
|
作者
Lotov, Alexander V. [1 ]
Miettinen, Kaisa [2 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Vavilova Str 40, Moscow 119333, Russia
[2] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe techniques for visualizing the Pareto optimal set that can be used if the multiobjective optimization problem considered has more than two objective functions. The techniques discussed can be applied in the framework of both MCDM and EMO approaches. First, lessons learned from methods developed for biobjective problems are considered. Then, visualization techniques for convex multiobjective optimization problems based on a polyhedral approximation of the Pareto optimal set are discussed. Finally, some visualization techniques are considered that use a pointwise approximation of the Pareto optimal set.
引用
收藏
页码:213 / +
页数:6
相关论文
共 50 条
  • [1] The Pareto record frontier
    Fill, James Allen
    Naiman, Daniel Q.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 24
  • [2] The Pareto Regret Frontier for Bandits
    Lattimore, Tor
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [3] The Pareto Frontier for Random Mechanisms
    Mennle, Timo
    Seuken, Sven
    [J]. EC'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2016, : 769 - 769
  • [4] Commentary: Pursuing the Pareto frontier in education
    Joyce, David L.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2020, 160 (04): : 1139 - 1139
  • [5] The Pareto Frontier of Inefficiency in Mechanism Design
    Filos-Ratsikas, Aris
    Giannakopoulos, Yiannis
    Lazos, Philip
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) : 923 - 944
  • [6] Visualization of the Moving Pareto Frontier in DSS
    Brusnikina, N. B.
    Lotov, A. V.
    [J]. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2011, 38 (05) : 322 - 331
  • [7] The Pareto Frontier of Inefficiency in Mechanism Design
    Filos-Ratsikas, Aris
    Giannakopoulos, Yiannis
    Lazos, Philip
    [J]. WEB AND INTERNET ECONOMICS, WINE 2019, 2019, 11920 : 186 - 199
  • [8] Comparison of two Pareto frontier approximations
    Berezkin, V. E.
    Lotov, A. V.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (09) : 1402 - 1410
  • [9] Comparison of two Pareto frontier approximations
    V. E. Berezkin
    A. V. Lotov
    [J]. Computational Mathematics and Mathematical Physics, 2014, 54 : 1402 - 1410
  • [10] A Taxonomy of Methods for Visualizing Pareto Front Approximations
    Filipic, Bogdan
    Tusar, Tea
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 649 - 656