Visualizing the Pareto Frontier

被引:0
|
作者
Lotov, Alexander V. [1 ]
Miettinen, Kaisa [2 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Vavilova Str 40, Moscow 119333, Russia
[2] Univ Jyvaskyla, Dept Math Informat Technol, FI-40014 Jyvaskyla, Finland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe techniques for visualizing the Pareto optimal set that can be used if the multiobjective optimization problem considered has more than two objective functions. The techniques discussed can be applied in the framework of both MCDM and EMO approaches. First, lessons learned from methods developed for biobjective problems are considered. Then, visualization techniques for convex multiobjective optimization problems based on a polyhedral approximation of the Pareto optimal set are discussed. Finally, some visualization techniques are considered that use a pointwise approximation of the Pareto optimal set.
引用
下载
收藏
页码:213 / +
页数:6
相关论文
共 50 条
  • [21] Reciprocal Optimal Control Problems and the Associated Pareto Frontier
    L. Grosset
    B. Viscolani
    Journal of Optimization Theory and Applications, 2006, 130 : 113 - 123
  • [22] Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems
    Lotov, AV
    Kamenev, GK
    Berezkin, VE
    DOKLADY MATHEMATICS, 2002, 66 (02) : 260 - 262
  • [23] Towards Higher Pareto Frontier in Multilingual Machine Translation
    Huang, Yichong
    Feng, Xiaocheng
    Geng, Xinwei
    Li, Baohang
    Qin, Bing
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 3802 - 3818
  • [24] A paradoxical Pareto frontier in the cake-cutting context
    Taylor, AD
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (02) : 227 - 233
  • [25] Sequence-defined Pareto frontier of a copolymer structure
    Bale, Ashwin A.
    Gautham, Sachin M. B.
    Patra, Tarak K.
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (14) : 2100 - 2113
  • [26] Maximizing a linear fractional function on a Pareto efficient frontier
    Hackman, ST
    Passy, U
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (01) : 83 - 103
  • [27] The normalized normal constraint method for generating the Pareto frontier
    A. Messac
    A. Ismail-Yahaya
    C.A. Mattson
    Structural and Multidisciplinary Optimization, 2003, 25 : 86 - 98
  • [28] The Pareto frontier of a finitely repeated game with unequal discounting
    Chen, Bo
    ECONOMICS LETTERS, 2007, 94 (02) : 177 - 184
  • [29] FROM SIMULATION TO INVENTION, BEYOND THE PARETO-FRONTIER
    Dubois, Sebastien
    Lin, Lei
    De Guio, Roland
    Rasovska, Ivana
    ICED 15, VOL 6: DESIGN METHODS AND TOOLS - PT 2, 2015,
  • [30] Reciprocal optimal control problems and the associated Pareto frontier
    Grosset, L.
    Viscolani, B.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 130 (01) : 113 - 123