Partial sums of starlike and convex functions

被引:108
|
作者
Silverman, H [1 ]
机构
[1] UNIV CALIF SAN DIEGO,SAN DIEGO,CA 92103
关键词
D O I
10.1006/jmaa.1997.5361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(n)(z) = z + Sigma(k = 2)(n)a(k)z(k) be the sequence of partial sums of a function f(z) = z + Sigma(k = 2)(infinity)a(k)z(k) that is analytic in \z\ < 1 and either starlike of order alpha or convex of order alpha, 0 less than or equal to alpha < 1. When the coefficients {a(k)} are ''small,'' we determine lower bounds on Re{f(z)/f(n)(z}, Re{f(n)(z)/f(z)}, Re{f'(z)/f(n)'(z)}, and Re{f(n)'(z)/f'(z)}. In all cases, the results are sharp for each n. (C) 1997 Academic Press.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 50 条
  • [21] The Radius of Convexity of Partial Sums of Convex Functions in One Direction
    Maharana, Sudhananda
    Prajapat, Jugal K.
    Srivastava, Hari M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2017, 87 (02) : 215 - 219
  • [22] The Radius of Convexity of Partial Sums of Convex Functions in One Direction
    Sudhananda Maharana
    Jugal K. Prajapat
    Hari M. Srivastava
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87 : 215 - 219
  • [23] FUNCTIONS STARLIKE AND CONVEX OF ORDER ALPHA
    GOEL, RM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (NOV): : 128 - 130
  • [24] ON CONVEX AND STARLIKE UNIVALENT-FUNCTIONS
    PANDEY, RK
    BHARGAVA, GP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (03) : 393 - 400
  • [25] Criteria for starlike and convex functions of order α
    Neng Xu
    Ding-Gong Yang
    Journal of Inequalities and Applications, 2015
  • [26] STARLIKE AND CONVEX FUNCTIONS OF ORDER ALPHA
    SINGH, P
    CHANDRA, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A587 - &
  • [27] Sufficient conditions for starlike and convex functions
    Ponnusamy, S.
    Vasundhra, P.
    ANNALES POLONICI MATHEMATICI, 2007, 90 (03) : 277 - 288
  • [28] Convex Icebergs and Sectorial Starlike Functions
    Barnard, Roger W.
    Lochman, Matthew H.
    Solynin, Alexander Yu.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (04) : 635 - 682
  • [29] Subclasses of Multivalent Starlike and Convex Functions
    Ali, Rosihan M.
    Ravichandran, V.
    Lee, See Keong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (03) : 385 - 394
  • [30] Criteria for univalent, starlike and convex functions
    Ponnusamy, S
    Singh, V
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (04) : 511 - 531