Partial sums of starlike and convex functions

被引:108
|
作者
Silverman, H [1 ]
机构
[1] UNIV CALIF SAN DIEGO,SAN DIEGO,CA 92103
关键词
D O I
10.1006/jmaa.1997.5361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(n)(z) = z + Sigma(k = 2)(n)a(k)z(k) be the sequence of partial sums of a function f(z) = z + Sigma(k = 2)(infinity)a(k)z(k) that is analytic in \z\ < 1 and either starlike of order alpha or convex of order alpha, 0 less than or equal to alpha < 1. When the coefficients {a(k)} are ''small,'' we determine lower bounds on Re{f(z)/f(n)(z}, Re{f(n)(z)/f(z)}, Re{f'(z)/f(n)'(z)}, and Re{f(n)'(z)/f'(z)}. In all cases, the results are sharp for each n. (C) 1997 Academic Press.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 50 条