ON THE SEGMENTATION OF SWITCHING AUTOREGRESSIVE PROCESSES BY NONPARAMETRIC BAYESIAN METHODS

被引:0
|
作者
Dash, Shishir [1 ]
Djuric, Petar M. [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
关键词
hidden Markov model; autoregressive process segmentation; hierarchical Dirichlet process; Gibbs sampling; non-parametric Bayesian; HIDDEN MARKOV-MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate the use of a variant of the nonparametric Bayesian (NPB) forward-backward (FB) method for sampling state sequences of hidden Markov models (HMMs), when the continuous-valued observations follow autoregressive (AR) processes. The goal is to get an accurate representation of the posterior probability of the state-sequence configuration. The advantage of using NPB samplers towards this end is well-known; one need not specify (or heuristically estimate) the number of states present in the model. Instead one uses hierarchical Dirichlet processes (HDPs) as priors for the state-transition probabilities to account for a potentially infinite number of states. The FB algorithm is known to increase the mixing rate of such samplers (compared to direct Gibbs), but can still yield significant spread in segmentation error. We show that by approximately integrating out some parameters of the model, one can alleviate this problem considerably.
引用
收藏
页码:1197 / 1201
页数:5
相关论文
共 50 条
  • [1] Bayesian Nonparametric Methods for Learning Markov Switching Processes
    Fox, Emily B.
    Sudderth, Erik B.
    Jordan, Michael I.
    Willsky, Alan S.
    IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (06) : 43 - 54
  • [2] Bayesian nonparametric vector autoregressive models
    Kalli, Maria
    Griffin, Jim E.
    JOURNAL OF ECONOMETRICS, 2018, 203 (02) : 267 - 282
  • [3] Nonparametric Bayesian Image Segmentation
    Peter Orbanz
    Joachim M. Buhmann
    International Journal of Computer Vision, 2008, 77 : 25 - 45
  • [4] Nonparametric Bayesian Dereverberation of Power Spectrograms Based on Infinite-Order Autoregressive Processes
    Maezawa, Akira
    Itoyama, Katsutoshi
    Yoshii, Kazuyoshi
    Okuno, Hiroshi G.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (12) : 1918 - 1930
  • [5] Nonparametric Bayesian image segmentation
    Orbanz, Peter
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) : 25 - 45
  • [6] Nonparametric Bayesian methods
    Mueller, Peter
    Quintana, Fernando A.
    STATISTICAL MODELLING, 2008, 8 (01) : 1 - 2
  • [7] BAYESIAN SPARSE VECTOR AUTOREGRESSIVE SWITCHING MODELS WITH APPLICATION TO HUMAN GESTURE PHASE SEGMENTATION
    Hadj-Amar, Beniamino
    Jewson, Jack
    Vannucci, Marina
    ANNALS OF APPLIED STATISTICS, 2024, 18 (03): : 2511 - 2531
  • [8] On Bayesian Identification of Autoregressive Processes
    Shaarawy, Samir M.
    Soliman, Emad E. A.
    Sorour, Waseem W.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2015, 11 (01) : 11 - 28
  • [9] A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching
    Roh, Taeyoung
    Jo, Seongil
    Lee, Ryounghwa
    KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 1049 - 1068
  • [10] Bayesian methods for autoregressive models
    Penny, WD
    Roberts, SJ
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 125 - 134