Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME

被引:12
|
作者
Nicola, George [1 ]
Berthold, Michael R. [2 ]
Hedrick, Michael P. [3 ]
Gilson, Michael K. [1 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Konstanz, Dept Comp & Informat Sci, D-78457 Constance, Germany
[3] Sanford Burnham Prebys Med Discovery Inst, La Jolla, CA USA
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2015年
基金
美国国家卫生研究院;
关键词
MAXIMUM COMMON SUBSTRUCTURE; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; PHOSPHOLIPASE A(2); SMALL MOLECULES; DATABASE; CLOPERASTINE; SIMILARITY; PLATFORM; COUGH; CLASSIFICATION;
D O I
10.1093/database/bav087
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Today's large, public databases of protein-small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses. Thus, we describe a collection of KNIME workflows that access BindingDB data via RESTful webservices and, for more intensive queries, via a local distillation of the full BindingDB dataset. We focus in particular on the KNIME implementation of knowledge-based tools to generate informed hypotheses regarding protein targets of bioactive compounds, based on notions of chemical similarity. A number of variants of this basic approach are tested for seven existing drugs with relatively ill-defined therapeutic targets, leading to replication of some previously confirmed results and discovery of new, high-quality hits. Implications for future development are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Scientific, educational, and communication issues associated with integrating and applying drug-like properties in drug discovery
    Borchardt, RT
    PHARMACEUTICAL PROFILING IN DRUG DISCOVERY FOR LEAD SELECTION, 2004, 1 : 451 - 466
  • [42] Aqueous and cosolvent solubility data for drug-like organic compounds
    Rytting, E
    Lentz, KA
    Chen, XQ
    Qian, F
    Venkatesh, S
    AAPS JOURNAL, 2005, 7 (01): : E78 - E105
  • [43] Identification In Silico and In Vitro of Novel Trypanosomicidal Drug-Like Compounds
    Castillo-Garit, Juan A.
    del Toro-Cortes, Oremia
    Kouznetsov, Vladimir V.
    Ochoa Puentes, Cristian
    Romero Bohorquez, Arnold R.
    Vega, Maria C.
    Rolon, Miriam
    Escario, Jose A.
    Gomez-Barrio, Alicia
    Marrero-Ponce, Yovani
    Torrens, Francisco
    Abad, Concepcion
    CHEMICAL BIOLOGY & DRUG DESIGN, 2012, 80 (01) : 38 - 45
  • [44] Inhibition of HMG-CoA synthase by drug-like compounds
    Skaff, D. Andrew
    Miziorko, Henry M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238 : 682 - 682
  • [45] Quantitative and qualitative prediction of corneal permeability for drug-like compounds
    Ghorbanzad'e, Mehdi
    Fatemi, Mohammad H.
    Karimpour, Masourneh
    Andersson, Patrik L.
    TALANTA, 2011, 85 (05) : 2686 - 2694
  • [46] DIAGNOSTIC OF A QSPR MODEL: AQUEOUS SOLUBILITY OF DRUG-LIKE COMPOUNDS
    Bolboaca, Sorana D.
    Jaentschi, Lorentz
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2010, 55 (04): : 69 - 76
  • [47] Predicting protein targets for drug-like compounds using transcriptomics
    Pabon, Nicolas A.
    Xia, Yan
    Estabrooks, Samuel K.
    Ye, Zhaofeng
    Herbrand, Amanda K.
    Suss, Evelyn
    Biondi, Ricardo M.
    Assimon, Victoria A.
    Gestwicki, Jason E.
    Brodsky, Jeffrey L.
    Camacho, Carlos J.
    Bar-Joseph, Ziv
    PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (12)
  • [48] QSAR-based permeability model for drug-like compounds
    Gozalbes, Rafael
    Jacewicz, Mary
    Annand, Robert
    Tsaioun, Katya
    Pineda-Lucena, Antonio
    BIOORGANIC & MEDICINAL CHEMISTRY, 2011, 19 (08) : 2615 - 2624
  • [49] Ligand-based discovery of novel trypanosomicidal drug-like compounds: In silico identification and experimental support
    Alberto Castillo-Garit, Juan
    Celeste Vega, Maria
    Rolon, Miriam
    Marrero-Ponce, Yovani
    Gomez-Barrio, Alicia
    Escario, Jose A.
    Alvarez Bello, Alfredo
    Montero, Alina
    Torrens, Francisco
    Perez-Gimenez, Facundo
    Aran, Vicente J.
    Abad, Concepcion
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2011, 46 (08) : 3324 - 3330
  • [50] Discovery of a structurally novel, drug-like and potent inhibitor of peptidylarginine deiminase
    Ferretti, Patrizia
    Pong, Kin U.
    Vagaska, Barbora
    Merchant, Rohan
    Matthews, Christopher J.
    Marson, Charles M.
    MEDCHEMCOMM, 2013, 4 (07) : 1109 - 1113