Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME

被引:12
|
作者
Nicola, George [1 ]
Berthold, Michael R. [2 ]
Hedrick, Michael P. [3 ]
Gilson, Michael K. [1 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Konstanz, Dept Comp & Informat Sci, D-78457 Constance, Germany
[3] Sanford Burnham Prebys Med Discovery Inst, La Jolla, CA USA
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2015年
基金
美国国家卫生研究院;
关键词
MAXIMUM COMMON SUBSTRUCTURE; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; PHOSPHOLIPASE A(2); SMALL MOLECULES; DATABASE; CLOPERASTINE; SIMILARITY; PLATFORM; COUGH; CLASSIFICATION;
D O I
10.1093/database/bav087
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Today's large, public databases of protein-small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses. Thus, we describe a collection of KNIME workflows that access BindingDB data via RESTful webservices and, for more intensive queries, via a local distillation of the full BindingDB dataset. We focus in particular on the KNIME implementation of knowledge-based tools to generate informed hypotheses regarding protein targets of bioactive compounds, based on notions of chemical similarity. A number of variants of this basic approach are tested for seven existing drugs with relatively ill-defined therapeutic targets, leading to replication of some previously confirmed results and discovery of new, high-quality hits. Implications for future development are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field
    Maciej Wójcikowski
    Piotr Zielenkiewicz
    Pawel Siedlecki
    Journal of Cheminformatics, 7
  • [32] Aqueous and cosolvent solubility data for drug-like organic compounds
    Erik Rytting
    Kimberley A. Lentz
    Xue-Qing Chen
    Feng Qian
    Srini Venkatesh
    The AAPS Journal, 7
  • [33] Finding multiactivity substructures by mining databases of drug-like compounds
    Sheridan, RP
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (03): : 1037 - 1050
  • [34] Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field
    Wojcikowski, Maciej
    Zielenkiewicz, Piotr
    Siedlecki, Pawel
    JOURNAL OF CHEMINFORMATICS, 2015, 7
  • [35] Improved drug-like properties of therapeutic proteins by directed evolution
    Buchanan, Andrew
    Ferraro, Franco
    Rust, Steven
    Sridharan, Sudharsan
    Franks, Ruth
    Dean, Greg
    McCourt, Matthew
    Jermutus, Lutz
    Minter, Ralph
    PROTEIN ENGINEERING DESIGN & SELECTION, 2012, 25 (10): : 631 - 638
  • [36] Six Laws of Open Source Drug Discovery
    Todd, Matthew H.
    CHEMMEDCHEM, 2019, 14 (21) : 1804 - 1809
  • [37] Open source drug discovery - A limited tutorial
    Robertson, Murray N.
    Ylioja, Paul M.
    Williamson, Alice E.
    Woelfle, Michael
    Robins, Michael
    Badiola, Katrina A.
    Willis, Paul
    Olliaro, Piero
    Wells, Timothy N. C.
    Todd, Matthew H.
    PARASITOLOGY, 2014, 141 (01) : 148 - 157
  • [38] Computer predicting metabolic profile for drug-like compounds.
    Borodina, YV
    Filimonov, DA
    Poroikov, VV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U351 - U351
  • [39] QSPR prediction of aqueous solubility of drug-like organic compounds
    Ghasemi, Jahanbakhsh
    Saaidpour, Saadi
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2007, 55 (04) : 669 - 674
  • [40] Nearest neighbor approaches to classify drug-like compounds.
    Cross, KP
    Blower, PE
    Fligner, M
    Verducci, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U501 - U501