Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME

被引:12
|
作者
Nicola, George [1 ]
Berthold, Michael R. [2 ]
Hedrick, Michael P. [3 ]
Gilson, Michael K. [1 ]
机构
[1] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[2] Univ Konstanz, Dept Comp & Informat Sci, D-78457 Constance, Germany
[3] Sanford Burnham Prebys Med Discovery Inst, La Jolla, CA USA
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2015年
基金
美国国家卫生研究院;
关键词
MAXIMUM COMMON SUBSTRUCTURE; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; PHOSPHOLIPASE A(2); SMALL MOLECULES; DATABASE; CLOPERASTINE; SIMILARITY; PLATFORM; COUGH; CLASSIFICATION;
D O I
10.1093/database/bav087
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Today's large, public databases of protein-small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses. Thus, we describe a collection of KNIME workflows that access BindingDB data via RESTful webservices and, for more intensive queries, via a local distillation of the full BindingDB dataset. We focus in particular on the KNIME implementation of knowledge-based tools to generate informed hypotheses regarding protein targets of bioactive compounds, based on notions of chemical similarity. A number of variants of this basic approach are tested for seven existing drugs with relatively ill-defined therapeutic targets, leading to replication of some previously confirmed results and discovery of new, high-quality hits. Implications for future development are discussed.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Release of 50 new, drug-like compounds and their computational target predictions for open source anti-tubercular drug discovery
    Jose Rebollo-Lopez, Maria
    Lelievre, Joel
    Alvarez-Gomez, Daniel
    Castro-Pichel, Julia
    Martinez-Jimenez, Francisco
    Papadatos, George
    Kumar, Vinod
    Colmenarejo, Gonzalo
    Mugumbate, Grace
    Hurle, Mark
    Barroso, Vanessa
    Young, Rob J.
    Martinez-Hoyos, Maria
    Gonzalez del Rio, Ruben
    Bates, Robert H.
    Maria Lopez-Roman, Eva
    Mendoza-Losana, Alfonso
    Brown, James R.
    Alvarez-Ruiz, Emilio
    Marti-Renom, Marc A.
    Overington, John P.
    Cammack, Nicholas
    Ballell, Lluis
    Barros-Aguire, David
    PLOS ONE, 2015, 10 (12):
  • [2] Drug Discovery Applications for KNIME: An Open Source Data Mining Platform
    Mazanetz, Michael P.
    Marmon, Robert J.
    Reisser, Catherine B. T.
    Morao, Inaki
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2012, 12 (18) : 1965 - 1979
  • [3] VeloceGenomics:: An accelerated in vivo drug discovery approach to rapidly predict the biologic, drug-like activity of compounds, proteins, or genes
    Papoian, R
    Scherer, A
    Saulnier, M
    Staedtler, F
    Cordier, A
    Legay, F
    Maurer, G
    Staeheli, J
    Vonderscher, J
    Chibout, SD
    PHARMACEUTICAL RESEARCH, 2005, 22 (10) : 1597 - 1613
  • [4] VeloceGenomics: An Accelerated in Vivo Drug Discovery Approach to Rapidly Predict the Biologic, Drug-Like Activity of Compounds, Proteins, or Genes
    Ruben Papoian
    Andreas Scherer
    Muriel Saulnier
    Frank Staedtler
    André Cordier
    Francois Legay
    Gerard Maurer
    Joerg Staeheli
    Jacky Vonderscher
    Salah-Dine Chibout
    Pharmaceutical Research, 2005, 22 : 1597 - 1613
  • [5] Improving the odds in discriminating "Drug-like" from "Non Drug-like" compounds
    Frimurer, TM
    Bywater, R
    Nærum, L
    Lauritsen, LN
    Brunak, S
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (06): : 1315 - 1324
  • [6] Drug-like index: A new approach to measure drug-like compounds and their diversity
    Xu, J
    Stevenson, J
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05): : 1177 - 1187
  • [7] Historeceptomic Fingerprints for Drug-Like Compounds
    Shmelkov, Evgeny
    Grigoryan, Arsen
    Swetnam, James
    Xin, Junyang
    Tivon, Doreen
    Shmelkov, Sergey V.
    Cardozo, Timothy
    FRONTIERS IN PHYSIOLOGY, 2015, 6
  • [8] Selection criteria for drug-like compounds
    Muegge, I
    MEDICINAL RESEARCH REVIEWS, 2003, 23 (03) : 302 - 321
  • [9] Towards the discovery of drug-like RNA ligands?
    Foloppe, Nicolas
    Matassova, Natalia
    Aboul-ela, Fareed
    DRUG DISCOVERY TODAY, 2006, 11 (21-22) : 1019 - 1027
  • [10] Profiling drug-like properties in discovery research
    Di, L
    Kerns, EH
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (03) : 402 - 408