Solving eigenvalue problems on curved surfaces using the Closest Point Method

被引:51
|
作者
Macdonald, Colin B. [1 ]
Brandman, Jeremy [2 ]
Ruuth, Steven J. [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Eigenvalues; Eigenfunctions; Laplace-Beltrami operator; Closest Point Method; Surface computation; Implicit surfaces; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICIT SURFACES; GENERAL GEOMETRIES; OPERATORS; PDES;
D O I
10.1016/j.jcp.2011.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7944 / 7956
页数:13
相关论文
共 50 条
  • [41] AN ITERATIVE METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS IN MATRIX FORM
    YANG, IM
    COMPUTERS & STRUCTURES, 1988, 29 (02) : 353 - 354
  • [42] A SMALLEST SINGULAR VALUE METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS
    S.F. Xu(Department of Mathematics
    Journal of Computational Mathematics, 1996, (01) : 23 - 31
  • [43] A rational approximation method for solving acoustic nonlinear eigenvalue problems
    El-Guide, Mohamed
    Miedlar, Agnieszka
    Saad, Yousef
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 111 : 44 - 54
  • [44] A High Accuracy Spectral Element Method for Solving Eigenvalue Problems
    Shan, Weikun
    Li, Huiyuan
    14TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS, ENGINEERING AND SCIENCE (DCABES 2015), 2015, : 472 - 476
  • [45] Generalized Finite Difference Method for Solving Waveguide Eigenvalue Problems
    Xu, Hui
    Bao, Yang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2022, 37 (03): : 266 - 272
  • [46] A Nonnested Augmented Subspace Method for Elliptic Eigenvalue Problems with Curved Interfaces
    Dang, Haikun
    Xie, Hehu
    Zhao, Gang
    Zhou, Chenguang
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (02)
  • [47] The method of external excitation for solving Laplace singular eigenvalue problems
    Reutskiy, S. Yu.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (02) : 209 - 214
  • [48] A smallest singular value method for solving inverse eigenvalue problems
    Xu, SF
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1996, 14 (01) : 23 - 31
  • [49] SOLVING OVERDETERMINED EIGENVALUE PROBLEMS
    Das, Saptarshi
    Neumaier, Arnold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02): : A541 - A560
  • [50] THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
    Macdonald, Colin B.
    Ruuth, Steven J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4330 - 4350