Solving eigenvalue problems on curved surfaces using the Closest Point Method

被引:51
|
作者
Macdonald, Colin B. [1 ]
Brandman, Jeremy [2 ]
Ruuth, Steven J. [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Eigenvalues; Eigenfunctions; Laplace-Beltrami operator; Closest Point Method; Surface computation; Implicit surfaces; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICIT SURFACES; GENERAL GEOMETRIES; OPERATORS; PDES;
D O I
10.1016/j.jcp.2011.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7944 / 7956
页数:13
相关论文
共 50 条
  • [21] Level Set Equations on Surfaces via the Closest Point Method
    Colin B. Macdonald
    Steven J. Ruuth
    Journal of Scientific Computing, 2008, 35 : 219 - 240
  • [22] Interior point methods for solving Pareto eigenvalue complementarity problems
    Adly, Samir
    Haddou, Mounir
    Le, Manh Hung
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (03): : 543 - 569
  • [23] Level set equations on surfaces via the Closest Point Method
    Macdonald, Colin B.
    Ruuth, Steven J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (2-3) : 219 - 240
  • [24] A Semi-Lagrangian Closest Point Method for Deforming Surfaces
    Auer, S.
    Westermann, R.
    COMPUTER GRAPHICS FORUM, 2013, 32 (07) : 207 - 214
  • [25] THE CLOSEST POINT METHOD AND MULTIGRID SOLVERS FOR ELLIPTIC EQUATIONS ON SURFACES
    Chen, Yujia
    Macdonald, Colin B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A134 - A155
  • [26] On solving generalized eigenvalue problems using Matlab
    Faber, K
    JOURNAL OF CHEMOMETRICS, 1997, 11 (01) : 87 - 91
  • [27] On solving generalized eigenvalue problems using matlab
    Ctr. for Proc. Analytical Chemistry, University of Washington, Box 351700, Seattle, WA 98195, United States
    J. Chemometr., 1 (87-91):
  • [28] A meshless collocation method based on Pascal polynomial approximation and implicit closest point method for solving reaction–diffusion systems on surfaces
    Hasan Zamani-Gharaghoshi
    Mehdi Dehghan
    Mostafa Abbaszadeh
    Engineering with Computers, 2024, 40 : 313 - 322
  • [29] LANCZOS METHOD FOR SOLVING LARGE STRUCTURAL EIGENVALUE PROBLEMS
    GERADIN, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (05): : T127 - T129
  • [30] OPTIMIZATION OF THE KANTOROVICH METHOD WHEN SOLVING EIGENVALUE PROBLEMS
    LAURA, PAA
    CORTINEZ, VH
    JOURNAL OF SOUND AND VIBRATION, 1988, 122 (02) : 396 - 398