Graph Regularized Symmetric Non-negative Matrix Factorization for Graph Clustering

被引:10
|
作者
Gao, Ziheng [1 ]
Guan, Naiyang [2 ]
Su, Longfei [2 ]
机构
[1] Natl Univ Def Technol, Sch Comuter Sci, Changsha, Hunan, Peoples R China
[2] Natl Innovat Inst Def Technol, Artificial Intelligence Res Ctr, Beijing, Peoples R China
关键词
Symmetric non-negative matrix factorization; Graph clustering; Big data; Coordinate descent; Distributed computing;
D O I
10.1109/ICDMW.2018.00062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symmetric non-negative matrix factorization (SymNMF) decomposes a high-dimensional symmetric non-negative matrix into a low-dimensional non-negative matrix and has been successfully used in graph clustering. In this paper, we propose a graph regularized symmetric non-negative matrix factorization (GrSymNMF) to enhance its performance in graph clustering. Particularly, GrSymNMF encodes the geometric structure so that the nearby points remain close to each other in the clustering domain. We optimize GrSymNMF by using a greedy coordinate descent algorithm and provide a distributed computing strategy to deploy GrSymNMF to large-scale datasets because it requires few communication overheads among computing nodes. The experiments on complex graph datasets and text corpus datasets verify the performance of GrSymNMF and efficiency, scalability and effectiveness of the distributed strategy of GrSymNMF.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [31] Graph Regularized Non-negative Matrix Factorization with Long-tail Constraint
    You, Lu
    Liu, Rui
    Zhang, He
    Shan, Z. M.
    2019 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2019,
  • [32] Incomplete multi-view clustering with incomplete graph-regularized orthogonal non-negative matrix factorization
    Naiyao Liang
    Zuyuan Yang
    Zhenni Li
    Wei Han
    Applied Intelligence, 2022, 52 : 14607 - 14623
  • [33] Incomplete multi-view clustering with incomplete graph-regularized orthogonal non-negative matrix factorization
    Liang, Naiyao
    Yang, Zuyuan
    Li, Zhenni
    Han, Wei
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14607 - 14623
  • [34] Sparse robust graph-regularized non-negative matrix factorization based on correntropy
    Wang, Chuan-Yuan
    Gao, Ying-Lian
    Liu, Jin-Xing
    Dai, Ling-Yun
    Shang, Junliang
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (01)
  • [35] Globality constrained adaptive graph regularized non-negative matrix factorization for data representation
    Sun, Yanfeng
    Wang, Jie
    Guo, Jipeng
    Hu, Yongli
    Yin, Baocai
    IET IMAGE PROCESSING, 2022, 16 (10) : 2577 - 2592
  • [36] Graph Regularized Constrained Non-Negative Matrix Factorization With Lp Smoothness for Image Representation
    Shu, Zhenqiu
    Weng, Zonghui
    Zhang, Yunmeng
    You, Cong-Zhe
    Liu, Zhen
    IEEE ACCESS, 2020, 8 : 133777 - 133786
  • [37] Characteristic Gene Selection Based on Robust Graph Regularized Non-Negative Matrix Factorization
    Wang, Dong
    Liu, Jin-Xing
    Gao, Ying-Lian
    Zheng, Chun-Hou
    Xu, Yong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (06) : 1059 - 1067
  • [38] Graph dual regularization non-negative matrix factorization for co-clustering
    Shang, Fanhua
    Jiao, L. C.
    Wang, Fei
    PATTERN RECOGNITION, 2012, 45 (06) : 2237 - 2250
  • [39] Online graph regularized non-negative matrix factorization for large-scale datasets
    Liu, Fudong
    Yang, Xuejun
    Guan, Naiyang
    Yi, Xiaodong
    NEUROCOMPUTING, 2016, 204 : 162 - 171
  • [40] Prediction of Microbe-Disease Associations by Graph Regularized Non-Negative Matrix Factorization
    Liu, Yue
    Wang, Shu-Lin
    Zhang, Jun-Feng
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (12) : 1385 - 1394