Graph Regularized Symmetric Non-negative Matrix Factorization for Graph Clustering

被引:10
|
作者
Gao, Ziheng [1 ]
Guan, Naiyang [2 ]
Su, Longfei [2 ]
机构
[1] Natl Univ Def Technol, Sch Comuter Sci, Changsha, Hunan, Peoples R China
[2] Natl Innovat Inst Def Technol, Artificial Intelligence Res Ctr, Beijing, Peoples R China
关键词
Symmetric non-negative matrix factorization; Graph clustering; Big data; Coordinate descent; Distributed computing;
D O I
10.1109/ICDMW.2018.00062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Symmetric non-negative matrix factorization (SymNMF) decomposes a high-dimensional symmetric non-negative matrix into a low-dimensional non-negative matrix and has been successfully used in graph clustering. In this paper, we propose a graph regularized symmetric non-negative matrix factorization (GrSymNMF) to enhance its performance in graph clustering. Particularly, GrSymNMF encodes the geometric structure so that the nearby points remain close to each other in the clustering domain. We optimize GrSymNMF by using a greedy coordinate descent algorithm and provide a distributed computing strategy to deploy GrSymNMF to large-scale datasets because it requires few communication overheads among computing nodes. The experiments on complex graph datasets and text corpus datasets verify the performance of GrSymNMF and efficiency, scalability and effectiveness of the distributed strategy of GrSymNMF.
引用
收藏
页码:379 / 384
页数:6
相关论文
共 50 条
  • [21] Adaptive graph regularized non-negative matrix factorization with self-weighted learning for data clustering
    Ma, Ziping
    Wang, Jingyu
    Li, Huirong
    Huang, Yulei
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28054 - 28073
  • [22] Local quality functions for graph clustering with non-negative matrix factorization
    van Laarhoven, Twan
    Marchiori, Elena
    PHYSICAL REVIEW E, 2014, 90 (06)
  • [23] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Leng, Chengcai
    Zhang, Hai
    Cai, Guorong
    Cheng, Irene
    Basu, Anup
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 584 - 595
  • [24] Correntropy induced metric based graph regularized non-negative matrix factorization
    Wang, Yuanyuan
    Wu, Shuyi
    Mao, Bin
    Zhang, Xiang
    Luo, Zhigang
    NEUROCOMPUTING, 2016, 204 : 172 - 182
  • [25] Distributed Graph Regularized Non-negative Matrix Factorization with Greedy Coordinate Descent
    Gao, Ziheng
    Guan, Naiyang
    Huang, Xuhui
    Peng, Xuefeng
    Luo, Zhigang
    Tang, Yuhua
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 1104 - 1109
  • [26] Graph Regularized Lp Smooth Non-negative Matrix Factorization for Data Representation
    Chengcai Leng
    Hai Zhang
    Guorong Cai
    Irene Cheng
    Anup Basu
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (02) : 584 - 595
  • [27] Discriminant Graph Regularized Non-negative Matrix Factorization (DGNMF) for Face Rrecognition
    Wan, Minghua
    Gai, Shan
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATION AND TECHNOLOGY (ICCT 2015), 2015, : 93 - 101
  • [28] A locally weighted sparse graph regularized Non-Negative Matrix Factorization method
    Feng, Yinfu
    Xiao, Jun
    Zhou, Kang
    Zhuang, Yueting
    NEUROCOMPUTING, 2015, 169 : 68 - 76
  • [29] Correntropy Induced Metric Based Graph Regularized Non-negative Matrix Factorization
    Mao, Bin
    Guan, Naiyang
    Tao, Dacheng
    Huang, Xuhui
    Luo, Zhigang
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 163 - 168
  • [30] COMMUNITY DETECTION APPROACH VIA GRAPH REGULARIZED NON-NEGATIVE MATRIX FACTORIZATION
    Ul Haq, Amin
    Li, Jian Ping
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Ishrat, Mohammad
    Guru, Abhishek
    Agbley, Bless Lord Y.
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,