Scalable qubit architecture based on holes in quantum dot molecules

被引:52
|
作者
Economou, Sophia E. [1 ]
Climente, Juan I. [2 ]
Badolato, Antonio [3 ]
Bracker, Allan S. [1 ]
Gammon, Daniel [1 ]
Doty, Matthew F. [4 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Univ Jaume 1, Dept Quim Fis & Analit, E-12080 Castellon de La Plana, Spain
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
OPTICAL CONTROL; SPIN;
D O I
10.1103/PhysRevB.86.085319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spins confined in quantum dots are a leading candidate for solid-state quantum bits that can be coherently controlled by optical pulses. There are, however, many challenges to developing a scalable multibit information processing device based on spins in quantum dots, including the natural inhomogeneous distribution of quantum dot energy levels, the difficulty of creating all-optical spin manipulation protocols compatible with nondestructive readout, and the substantial electron-nuclear hyperfine interaction-induced decoherence. Here, we present a scalable qubit design and device architecture based on the spin states of single holes confined in a quantum dot molecule. The quantum dot molecule qubit enables a new strategy for optical coherent control with dramatically enhanced wavelength tunability. The use of hole spins allows the suppression of decoherence via hyperfine interactions and enables coherent spin rotations using Raman transitions mediated by a hole-spin-mixed optically excited state. Because the spin mixing is present only in the optically excited state, dephasing and decoherence are strongly suppressed in the ground states that define the qubits and nondestructive readout is possible. We present the qubit and device designs and analyze the wavelength tunability and fidelity of gate operations that can be implemented using this strategy. We then present experimental and theoretical progress toward implementing this design.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Effective Hamiltonian for the hybrid double quantum dot qubit
    Ferraro, E.
    De Michielis, M.
    Mazzeo, G.
    Fanciulli, M.
    Prati, E.
    QUANTUM INFORMATION PROCESSING, 2014, 13 (05) : 1155 - 1173
  • [42] Influence of an anisotropic parabolic potential on the quantum dot qubit
    赵翠兰
    蔡春雨
    肖景林
    Journal of Semiconductors, 2013, (11) : 11 - 14
  • [43] The influence of electric field on a parabolic quantum dot qubit
    尹辑文
    肖景林
    于毅夫
    王子武
    Chinese Physics B, 2009, 18 (02) : 446 - 450
  • [44] Quantum control and process tomography of a semiconductor quantum dot hybrid qubit
    Dohun Kim
    Zhan Shi
    C. B. Simmons
    D. R. Ward
    J. R. Prance
    Teck Seng Koh
    John King Gamble
    D. E. Savage
    M. G. Lagally
    Mark Friesen
    S. N. Coppersmith
    Mark A. Eriksson
    Nature, 2014, 511 : 70 - 74
  • [45] The effect of electric field on an asymmetric quantum dot qubit
    Jing-Lin Xiao
    Quantum Information Processing, 2013, 12 : 3707 - 3716
  • [46] Complete state tomography of a quantum dot spin qubit
    Cogan, Dan
    Peniakov, Giora
    Su, Zu-En
    Gershoni, David
    PHYSICAL REVIEW B, 2020, 101 (03)
  • [47] Isotopically enhanced triple-quantum-dot qubit
    Eng, Kevin
    Ladd, Thaddeus D.
    Smith, Aaron
    Borselli, Matthew G.
    Kiselev, Andrey A.
    Fong, Bryan H.
    Holabird, Kevin S.
    Hazard, Thomas M.
    Huang, Biqin
    Deelman, Peter W.
    Milosavljevic, Ivan
    Schmitz, Adele E.
    Ross, Richard S.
    Gyure, Mark F.
    Hunter, Andrew T.
    SCIENCE ADVANCES, 2015, 1 (04):
  • [48] The effect of electric field on an asymmetric quantum dot qubit
    Xiao, Jing-Lin
    QUANTUM INFORMATION PROCESSING, 2013, 12 (12) : 3707 - 3716
  • [49] Logic Operations of Charge Qubit in a Triple Quantum Dot
    Ptaszynski, K.
    Bulka, B. R.
    ACTA PHYSICA POLONICA A, 2016, 129 (1A) : A30 - A32
  • [50] Model of qubit in multi-electron quantum dot
    Jacak, L
    Krasnyj, J
    Jacak, D
    Salejda, W
    Mitus, A
    ACTA PHYSICA POLONICA A, 2001, 99 (02) : 277 - 291