Scalable qubit architecture based on holes in quantum dot molecules

被引:52
|
作者
Economou, Sophia E. [1 ]
Climente, Juan I. [2 ]
Badolato, Antonio [3 ]
Bracker, Allan S. [1 ]
Gammon, Daniel [1 ]
Doty, Matthew F. [4 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Univ Jaume 1, Dept Quim Fis & Analit, E-12080 Castellon de La Plana, Spain
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
OPTICAL CONTROL; SPIN;
D O I
10.1103/PhysRevB.86.085319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spins confined in quantum dots are a leading candidate for solid-state quantum bits that can be coherently controlled by optical pulses. There are, however, many challenges to developing a scalable multibit information processing device based on spins in quantum dots, including the natural inhomogeneous distribution of quantum dot energy levels, the difficulty of creating all-optical spin manipulation protocols compatible with nondestructive readout, and the substantial electron-nuclear hyperfine interaction-induced decoherence. Here, we present a scalable qubit design and device architecture based on the spin states of single holes confined in a quantum dot molecule. The quantum dot molecule qubit enables a new strategy for optical coherent control with dramatically enhanced wavelength tunability. The use of hole spins allows the suppression of decoherence via hyperfine interactions and enables coherent spin rotations using Raman transitions mediated by a hole-spin-mixed optically excited state. Because the spin mixing is present only in the optically excited state, dephasing and decoherence are strongly suppressed in the ground states that define the qubits and nondestructive readout is possible. We present the qubit and device designs and analyze the wavelength tunability and fidelity of gate operations that can be implemented using this strategy. We then present experimental and theoretical progress toward implementing this design.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] FASQuiC: Flexible Architecture for Scalable Spin Qubit Control
    Toubeix, Mathieu
    Guthmuller, Eric
    Evans, Adrian
    Faurie, Antoine
    Meunier, Tristan
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5
  • [22] Tunable Hybrid Qubit in a Triple Quantum Dot
    Wang, Bao-Chuan
    Cao, Gang
    Li, Hai-Ou
    Xiao, Ming
    Guo, Guang-Can
    Hu, Xuedong
    Jiang, Hong-Wen
    Guo, Guo-Ping
    PHYSICAL REVIEW APPLIED, 2017, 8 (06):
  • [23] Latched readout for the quantum dot hybrid qubit
    Corrigan, J.
    Dodson, J. P.
    Thorgrimsson, Brandur
    Neyens, Samuel F.
    Knapp, T. J.
    McJunkin, Thomas
    Coppersmith, S. N.
    Eriksson, M. A.
    APPLIED PHYSICS LETTERS, 2023, 122 (07)
  • [24] The Decoherence of Single Electron Quantum Dot Qubit
    Yu, Yi-Fu
    Li, Wei-Ping
    Yin, Ji-Wen
    Xiao, Jing-Lin
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3322 - 3328
  • [25] A quantum dot spin qubit with thermal bias
    Liu, Jia
    Cheng, Jie
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 479 - 489
  • [26] Extending the coherence of a quantum dot hybrid qubit
    Thorgrimsson, Brandur
    Kim, Dohun
    Yang, Yuan-Chi
    Smith, L. W.
    Simmons, C. B.
    Ward, Daniel R.
    Foote, Ryan H.
    Corrigan, J.
    Savage, D. E.
    Lagally, M. G.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    NPJ QUANTUM INFORMATION, 2017, 3
  • [27] Decoherence of the hybrid qubit in a double quantum dot
    Qin, Xiao-Ke
    EPL, 2016, 114 (03)
  • [28] A quantum dot spin qubit with thermal bias
    Jia Liu
    Jie Cheng
    Quantum Information Processing, 2015, 14 : 479 - 489
  • [29] Spin qubit relaxation in a moving quantum dot
    Huang, Peihao
    Hu, Xuedong
    PHYSICAL REVIEW B, 2013, 88 (07):
  • [30] Extending the coherence of a quantum dot hybrid qubit
    Brandur Thorgrimsson
    Dohun Kim
    Yuan-Chi Yang
    L. W. Smith
    C. B. Simmons
    Daniel R. Ward
    Ryan H. Foote
    J. Corrigan
    D. E. Savage
    M. G. Lagally
    Mark Friesen
    S. N. Coppersmith
    M. A. Eriksson
    npj Quantum Information, 3