Scalable qubit architecture based on holes in quantum dot molecules

被引:52
|
作者
Economou, Sophia E. [1 ]
Climente, Juan I. [2 ]
Badolato, Antonio [3 ]
Bracker, Allan S. [1 ]
Gammon, Daniel [1 ]
Doty, Matthew F. [4 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Univ Jaume 1, Dept Quim Fis & Analit, E-12080 Castellon de La Plana, Spain
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
OPTICAL CONTROL; SPIN;
D O I
10.1103/PhysRevB.86.085319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spins confined in quantum dots are a leading candidate for solid-state quantum bits that can be coherently controlled by optical pulses. There are, however, many challenges to developing a scalable multibit information processing device based on spins in quantum dots, including the natural inhomogeneous distribution of quantum dot energy levels, the difficulty of creating all-optical spin manipulation protocols compatible with nondestructive readout, and the substantial electron-nuclear hyperfine interaction-induced decoherence. Here, we present a scalable qubit design and device architecture based on the spin states of single holes confined in a quantum dot molecule. The quantum dot molecule qubit enables a new strategy for optical coherent control with dramatically enhanced wavelength tunability. The use of hole spins allows the suppression of decoherence via hyperfine interactions and enables coherent spin rotations using Raman transitions mediated by a hole-spin-mixed optically excited state. Because the spin mixing is present only in the optically excited state, dephasing and decoherence are strongly suppressed in the ground states that define the qubits and nondestructive readout is possible. We present the qubit and device designs and analyze the wavelength tunability and fidelity of gate operations that can be implemented using this strategy. We then present experimental and theoretical progress toward implementing this design.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Engineering Spins in Quantum Dot Molecules for Scalable Quantum Photonics
    Doty, Matthew F.
    Ma, Xiangyu
    Bryant, Garnett W.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [2] Quantum-Dot-Based Resonant Exchange Qubit
    Medford, J.
    Beil, J.
    Taylor, J. M.
    Rashba, E. I.
    Lu, H.
    Gossard, A. C.
    Marcus, C. M.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [3] Scalable quantum dot based optical interconnects
    Williams, K. A.
    Albores-Mejia, A.
    de Vries, T.
    Smalbrugge, E.
    Oei, Y. S.
    Smit, M. K.
    Notzel, R.
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 628 - 629
  • [4] Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture
    Davide Rotta
    Marco De Michielis
    Elena Ferraro
    Marco Fanciulli
    Enrico Prati
    Quantum Information Processing, 2016, 15 : 2253 - 2274
  • [5] Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture
    Rotta, Davide
    De Michielis, Marco
    Ferraro, Elena
    Fanciulli, Marco
    Prati, Enrico
    QUANTUM INFORMATION PROCESSING, 2016, 15 (06) : 2253 - 2274
  • [6] SCALABLE QUANTUM NETWORKS BASED ON FEW-QUBIT REGISTERS
    Jiang, Liang
    Taylor, Jacob M.
    Sorensen, Anders S.
    Lukin, Mikhail D.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2010, 8 (1-2) : 93 - 104
  • [7] Scalable parity architecture with a shuttling-based spin qubit processor
    Ginzel, Florian
    Fellner, Michael
    Ertler, Christian
    Schreiber, Lars R.
    Bluhm, Hendrik
    Lechner, Wolfgang
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [8] Quantum control of a model qubit based on a multi-layered quantum dot
    Ferron, Alejandro
    Serra, Pablo
    Osenda, Omar
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (13)
  • [9] Manipulations of a qubit in a semiconductor quantum dot
    Zrenner, A
    Stufler, S
    Ester, P
    Bichler, M
    ADVANCES IN SOLID STATE PHYSICS 45, 2005, 45 : 173 - 184
  • [10] Quantum dot molecules
    Austing, DG
    Honda, T
    Muraki, K
    Tokura, Y
    Tarucha, S
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 206 - 209