Landau theory of the Mott transition in the fully frustrated Hubbard model in infinite dimensions

被引:64
|
作者
Kotliar, G [1 ]
机构
[1] Rutgers State Univ, Serin Phys Lab, Piscataway, NJ 08854 USA
来源
EUROPEAN PHYSICAL JOURNAL B | 1999年 / 11卷 / 01期
关键词
D O I
10.1007/s100510050914
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We discuss the solution of the Mott transition problem in a fully frustrated lattice with a semicircular density of states in the limit of infinite dimensions from the point of view of a Landau free energy functional. This approach provides a simple relation between the free energy of the lattice model and that of its local description in terms of an impurity model. The character of the Mott transition in infinite dimensions, las reviewed by Georges, Kotliar, Krauth and Rozenberg, Rev. Mod. Phys. 68, 13 (1996)) follows simply from the form of the free energy functional and the physics of quantum impurity models. At zero temperature, below a critical value of the interaction U, a Mott insulator with a finite gap in the one particle spectrum, becomes unstable to the formation of a narrow band near the Fermi energy. Using the insights provided by the Landau approach we answer questions raised about the dynamical mean field solution of the Mott transition problem, and comment on its applicability to three dimensional transition metal oxides.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 50 条
  • [21] Hubbard model in infinite dimensions
    不详
    MOTT METAL-INSULATOR TRANSITION, 1997, 137 : 185 - 242
  • [22] Z2 gauge theory description of the Mott transition in infinite dimensions
    Zitko, Rok
    Fabrizio, Michele
    PHYSICAL REVIEW B, 2015, 91 (24):
  • [23] Non-Fermi liquid and Mott transition in the multi-channel two-band Hubbard model in infinite dimensions
    Ono, Y
    Tsuruta, A
    Matsuura, T
    Kuroda, Y
    PHYSICA B, 2000, 281 : 410 - 411
  • [24] Continuous phase transition of a fully frustrated XY model in three dimensions
    Kim, Kwangmoo
    Stroud, David
    PHYSICAL REVIEW B, 2006, 73 (22):
  • [25] Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
    Eastwood, MP
    Gebhard, F
    Kalinowski, E
    Nishimoto, S
    Noack, RM
    EUROPEAN PHYSICAL JOURNAL B, 2003, 35 (02): : 155 - 175
  • [26] Analytical and numerical treatment of the Mott-Hubbard insulator in infinite dimensions
    M. P. Eastwood
    F. Gebhard
    E. Kalinowski
    S. Nishimoto
    R. M. Noack
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 35 : 155 - 175
  • [27] Degenerate Hubbard model in infinite dimensions
    Rozenberg, Marcelo J.
    Physica B: Condensed Matter, 1997, 237-238 : 78 - 80
  • [28] THE HUBBARD-MODEL IN INFINITE DIMENSIONS
    METZNER, W
    VOLLHARDT, D
    INTERACTING ELECTRONS IN REDUCED DIMENSIONS, 1989, 213 : 129 - 134
  • [29] HUBBARD-MODEL IN INFINITE DIMENSIONS
    GEORGES, A
    KOTLIAR, G
    PHYSICAL REVIEW B, 1992, 45 (12) : 6479 - 6483
  • [30] Degenerate Hubbard model in infinite dimensions
    Rozenberg, MJ
    PHYSICA B-CONDENSED MATTER, 1997, 237 : 78 - 80