Convolutional neural networks with refined loss functions for the real-time crash risk analysis

被引:54
|
作者
Yu, Rongjie [1 ,2 ]
Wang, Yiyun [1 ,2 ]
Zou, Zihang [3 ]
Wang, Liqiang [3 ]
机构
[1] Tongji Univ, Coll Transportat Engn, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Minist Educ, Key Lab Rd & Traff Engn, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[3] Univ Cent Florida, Dept Comp Sci, Orlando, FL 32816 USA
关键词
Real-time crash risk analysis; Convolutional Neural Network (CNN); Focal loss; Temporal and spatial operational features; Imbalanced data issue; OF-THE-ART; UPDATING APPROACH; PREDICTION; SPEED; TRANSPORTATION; LIKELIHOOD; FREEWAYS; MODELS;
D O I
10.1016/j.trc.2020.102740
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The real-time crash risk analyses were proposed to establish the relationships between crash occurrence probability and pre-crash traffic operational conditions. Given its great application potentials that link with Active Traffic Management System (ATMS) for proactive safety management, it has become an important research area. Currently, researchers mainly developed the real-time crash risk analysis models with traffic flow descriptive statistics employed as explanatory variables and with re-sampled balanced dataset, which hold the limitations of insufficiently capturing the temporal-spatial traffic flow characteristics and failing to provide classification capabilities when deal with the imbalanced datasets. In this study, a Convolutional Neural Network (CNN) modelling approach with refined loss functions has been first time introduced to the real-time crash risk analyses. The primary objectives of the proposed CNN models are: (1) utilizing the tensor-based data structure to explore the multi-dimensional, temporal-spatial correlated pre-crash operational features; and (2) optimizing the loss functions to overcome the low classification accuracy issue brought by the imbalanced data. Data from the Shanghai urban expressway system were utilized for the empirical analysis. And a total of three types of loss functions, including traditional binary cross entropy, the a-weighted cross entropy and the focal loss, were introduced and being tested with varying ratios of crash and non-crash datasets. The modeling results show that the CNN model has better classification performance compared to the traditional Multi-layer Perceptrons (MLP) model with the tensor-based structure data. Besides, the developed CNN model with focal loss function has substantial classification enhancement under the imbalanced datasets. Finally, the distributions of predicting probabilities for balanced and imbalanced datasets were plotted to understand the effects of the imbalanced dataset and revealed how the proposed CNN model with focal loss function improves the model performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Real-Time Hair Filtering with Convolutional Neural Networks
    Currius, Roc R.
    Assarsson, Ulf
    Sintorn, Erik
    [J]. PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2022, 5 (01)
  • [2] Real-time arrhythmia detection using convolutional neural networks
    Vu, Thong
    Petty, Tyler
    Yakut, Kemal
    Usman, Muhammad
    Xue, Wei
    Haas, Francis M.
    Hirsh, Robert A.
    Zhao, Xinghui
    [J]. FRONTIERS IN BIG DATA, 2023, 6
  • [3] Convolutional and Recurrent Neural Networks for Real-time Data Classification
    Abroyan, Narek
    [J]. 2017 SEVENTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH 2017), 2017, : 42 - 45
  • [4] Convolutional Neural Networks for Real-Time and Wireless Damage Detection
    Avci, Onur
    Abdeljaber, Osama
    Kiranyaz, Serkan
    Inman, Daniel
    [J]. DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 129 - 136
  • [5] Convolutional neural networks for real-time epileptic seizure detection
    Achilles, Felix
    Tombari, Federico
    Belagiannis, Vasileios
    Loesch, Anna Mira
    Noachtar, Soheyl
    Navab, Nassir
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 264 - 269
  • [6] Real-Time Pedestrian Detection Using Convolutional Neural Networks
    Kuang, Ping
    Ma, Tingsong
    Li, Fan
    Chen, Ziwei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (11)
  • [7] Real-Time Grasp Detection Using Convolutional Neural Networks
    Redmon, Joseph
    Angelova, Anelia
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1316 - 1322
  • [8] Real-time Human Pose Estimation with Convolutional Neural Networks
    Linna, Marko
    Kannala, Juho
    Rahtu, Esa
    [J]. PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 335 - 342
  • [9] Detection of Arrhythmia in Real-time using ECG Signal Analysis and Convolutional Neural Networks
    Reddy, Sashank
    Seshadri, Surabhi B.
    Bothra, G. Sankesh
    Suhas, T. G.
    Thundiyil, Saneesh Cleatus
    [J]. PROCEEDINGS OF 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL PROBLEMS OF ELECTRICAL ENGINEERING (CPEE), 2020,
  • [10] Real-World, Real-Time Robotic Grasping with Convolutional Neural Networks
    Watson, Joe
    Hughes, Josie
    Iida, Fumiya
    [J]. TOWARDS AUTONOMOUS ROBOTIC SYSTEMS (TAROS 2017), 2017, 10454 : 617 - 626