Real-time Human Pose Estimation with Convolutional Neural Networks

被引:2
|
作者
Linna, Marko [1 ]
Kannala, Juho [2 ]
Rahtu, Esa [3 ]
机构
[1] Univ Oulu, Oulu, Finland
[2] Aalto Univ, Helsinki, Finland
[3] Tampere Univ Technol, Tampere, Finland
关键词
Human Pose Estimation; Person Detection; Convolutional Neural Networks;
D O I
10.5220/0006624403350342
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a method for real-time multi-person human pose estimation from video by utilizing convolutional neural networks. Our method is aimed for use case specific applications, where good accuracy is essential and variation of the background and poses is limited. This enables us to use a generic network architecture, which is both accurate and fast. We divide the problem into two phases: (1) pre-training and (2) finetuning. In pre-training, the network is learned with highly diverse input data from publicly available datasets, while in finetuning we train with application specific data, which we record with Kinect. Our method differs from most of the state-of-the-art methods in that we consider the whole system, including person detector, pose estimator and an automatic way to record application specific training material for finetuning. Our method is considerably faster than many of the state-of-the-art methods. Our method can be thought of as a replacement for Kinect in restricted environments. It can be used for tasks, such as gesture control, games, person tracking, action recognition and action tracking. We achieved accuracy of 96.8% (PCK@0.2) with application specific data.
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [1] Real-time human pose estimation on a smart walker using convolutional neural networks
    Palermo, Manuel
    Moccia, Sara
    Migliorelli, Lucia
    Frontoni, Emanuele
    Santos, Cristina P.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [2] Real-time Convolutional Networks for Depth-based Human Pose Estimation
    Martinez-Gonzalez, Angel
    Villamizar, Michael
    Canevet, Olivier
    Odobez, Jean-Marc
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 41 - 47
  • [3] Real-Time Landing Spot Detection and Pose Estimation on Thermal Images Using Convolutional Neural Networks
    Chen, Xudong
    Lin, Feng
    Hamid, Mohamed Redhwan Abdul
    Teo, Swee Huat
    Phang, Swee King
    [J]. 2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 998 - 1003
  • [4] A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks
    Zhang-Jin Huang
    Xiang-Xiang He
    Fang-Jun Wang
    Qing Shen
    [J]. Journal of Computer Science and Technology, 2021, 36 : 434 - 444
  • [5] A Real-Time Multi-Stage Architecture for Pose Estimation of Zebrafish Head with Convolutional Neural Networks
    Huang, Zhang-Jin
    He, Xiang-Xiang
    Wang, Fang-Jun
    Shen, Qing
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (02): : 434 - 444
  • [6] Human Pose Estimation-Based Real-Time Gait Analysis Using Convolutional Neural Network
    Rohan, Ali
    Rabah, Mohammed
    Hosny, Tarek
    Kim, Sung-Ho
    [J]. IEEE ACCESS, 2020, 8 : 191542 - 191550
  • [7] Human Pose Estimation Using Convolutional Neural Networks
    Singh, Anubhav
    Agarwal, Shruti
    Nagrath, Preeti
    Saxena, Anmol
    Thakur, Narina
    [J]. PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 946 - 952
  • [8] Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks
    Ge, Liuhao
    Liang, Hui
    Yuan, Junsong
    Thalmann, Daniel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) : 956 - 970
  • [9] Real-Time Object Pose Estimation with Pose Interpreter Networks
    Wu, Jimmy
    Zhou, Bolei
    RusseLL, Rebecca
    Kee, Vincent
    Wagner, Syler
    Hebert, Mitchell
    Torralba, Antonio
    Johnson, David M. S.
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6798 - 6805
  • [10] Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks
    Tompson, Jonathan
    Stein, Murphy
    Lecun, Yann
    Perlin, Ken
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (05):