Mean-variance portfolio selection with random parameters in a complete market

被引:173
|
作者
Lim, AEB [1 ]
Zhou, XY
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
关键词
dynamic mean-variance portfolio selection; stochastic linear-quadratic optimal control; backward stochastic differential equation; stochastic Riccati equation; efficient frontier;
D O I
10.1287/moor.27.1.101.337
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns the continuous-time, mean-variance portfolio selection problem in a complete market with random interest rate, appreciation rates, and volatility coefficients. The problem is tackled using the results of stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), two theories that have been extensively studied and developed in recent years. Specifically, the mean-variance problem is formulated as a linearly constrained stochastic LQ control problem. Solvability of this LQ problem is reduced, in turn, to proving global solvability of a stochastic Riccati equation. The proof of existence and uniqueness of this Riccati equation, which is a fully nonlinear and singular BSDE with random coefficients, is interesting in its own right and relies heavily on the structural properties of the equation. Efficient investment strategies as well as the mean-variance efficient frontier are then analytically derived in terms of the solution of this equation. In particular, it is demonstrated that the efficient frontier in the mean-standard deviation diagram is still a straight line or, equivalently, risk-free investment is still possible, even when the interest rate is random. Finally, a version of the Mutual Fund Theorem is presented.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [31] Mean-Variance Adjusting Model for Portfolio Selection Problem with Fuzzy Random Returns
    Qin, Zhongfeng
    Xu, Lei
    2014 SEVENTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO), 2014, : 83 - 87
  • [32] Optimal dynamic portfolio selection in a frictional market with mutiperiod mean-variance formulation
    Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
    Shanghai Ligong Daxue Xuebao, 2008, 4 (339-344):
  • [33] Mean-variance efficiency of the market portfolio and futures trading
    Lioui, A
    Poncet, P
    JOURNAL OF FUTURES MARKETS, 2001, 21 (04) : 329 - 346
  • [34] Mean-Variance Portfolio Selection with Tracking Error Penalization
    Lefebvre, William
    Loeper, Gregoire
    Pham, Huyen
    MATHEMATICS, 2020, 8 (11) : 1 - 23
  • [35] Mean-variance portfolio selection under partial information
    Xiong, Jie
    Zhou, Xun Yu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) : 156 - 175
  • [36] Dynamic mean-variance portfolio selection with borrowing constraint
    Fu, Chenpeng
    Lari-Lavassani, Ali
    Li, Xun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (01) : 312 - 319
  • [37] Tail mean-variance portfolio selection with estimation risk
    Huang, Zhenzhen
    Wei, Pengyu
    Weng, Chengguo
    INSURANCE MATHEMATICS & ECONOMICS, 2024, 116 : 218 - 234
  • [38] Minimax mean-variance models for fuzzy portfolio selection
    Huang, Xiaoxia
    SOFT COMPUTING, 2011, 15 (02) : 251 - 260
  • [39] Minimax mean-variance models for fuzzy portfolio selection
    Xiaoxia Huang
    Soft Computing, 2011, 15 : 251 - 260
  • [40] CAPITAL GROWTH AND MEAN-VARIANCE APPROACH TO PORTFOLIO SELECTION
    HAKANSSON, NH
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1971, 6 (01) : 517 - 557