Mean-variance portfolio selection with random parameters in a complete market

被引:173
|
作者
Lim, AEB [1 ]
Zhou, XY
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
关键词
dynamic mean-variance portfolio selection; stochastic linear-quadratic optimal control; backward stochastic differential equation; stochastic Riccati equation; efficient frontier;
D O I
10.1287/moor.27.1.101.337
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns the continuous-time, mean-variance portfolio selection problem in a complete market with random interest rate, appreciation rates, and volatility coefficients. The problem is tackled using the results of stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), two theories that have been extensively studied and developed in recent years. Specifically, the mean-variance problem is formulated as a linearly constrained stochastic LQ control problem. Solvability of this LQ problem is reduced, in turn, to proving global solvability of a stochastic Riccati equation. The proof of existence and uniqueness of this Riccati equation, which is a fully nonlinear and singular BSDE with random coefficients, is interesting in its own right and relies heavily on the structural properties of the equation. Efficient investment strategies as well as the mean-variance efficient frontier are then analytically derived in terms of the solution of this equation. In particular, it is demonstrated that the efficient frontier in the mean-standard deviation diagram is still a straight line or, equivalently, risk-free investment is still possible, even when the interest rate is random. Finally, a version of the Mutual Fund Theorem is presented.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 50 条
  • [21] Mean-variance portfolio selection of cointegrated assets
    Chiu, Mei Choi
    Wong, Hoi Ying
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (08): : 1369 - 1385
  • [22] THE GENERAL MEAN-VARIANCE PORTFOLIO SELECTION PROBLEM
    MARKOWITZ, HM
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1684): : 543 - 549
  • [23] Mean-variance portfolio selection with correlation risk
    Chiu, Mei Choi
    Wong, Hoi Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 432 - 444
  • [24] PORTFOLIO SELECTION IN THE MEAN-VARIANCE MODEL - A NOTE
    NIELSEN, LT
    JOURNAL OF FINANCE, 1987, 42 (05): : 1371 - 1376
  • [25] Mean-Variance Portfolio Selection with Margin Requirements
    Zhou, Yuan
    Wu, Zhe
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [26] ON TIME CONSISTENCY FOR MEAN-VARIANCE PORTFOLIO SELECTION
    Vigna, Elena
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2020, 23 (06)
  • [27] An asymptotic analysis of the mean-variance portfolio selection
    Ottucsak, Gyorgy
    Vajda, Istvan
    STATISTICS & RISK MODELING, 2007, 25 (01) : 63 - 88
  • [28] ROBUST MEAN-VARIANCE PORTFOLIO SELECTION WITH WARD AND COMPLETE LINKAGE CLUSTERING ALGORITHM
    La Gubu
    Rosadi, Dedi
    Abdurakhman
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2020, 54 (03): : 111 - 127
  • [29] Dynamic mean-variance portfolio selection in market with jump-diffusion models
    Guo, Zijun
    Duan, Banxiang
    OPTIMIZATION, 2015, 64 (03) : 663 - 674
  • [30] Portfolio Selection with Random Liability and Affine Interest Rate in the Mean-Variance Framework
    Hao CHANG
    Chunfeng WANG
    Zhenming FANG
    Journal of Systems Science and Information, 2017, 5 (03) : 229 - 249