A metabolite-centric view on flux distributions in genome-scale metabolic models

被引:20
|
作者
Riemer, S. Alexander [1 ]
Rex, Rene [1 ]
Schomburg, Dietmar [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Dept Bioinformat & Biochem, D-38106 Braunschweig, Germany
来源
BMC SYSTEMS BIOLOGY | 2013年 / 7卷
关键词
Split ratios; Branch points; Metabolic modelling; Flux balance analysis; Metabolic reconstruction; Constraint-based modelling; Stoichiometric matrix; Linear programming; iJO1366; iAF1260; ESCHERICHIA-COLI; SYSTEMS; PATHWAY; DIHYDROXYACETONE; RECONSTRUCTION; REPRESENTATION; PRINCIPLES; PREDICTION; PHYLOGENY; REVEALS;
D O I
10.1186/1752-0509-7-33
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Genome-scale metabolic models are important tools in systems biology. They permit the in-silico prediction of cellular phenotypes via mathematical optimisation procedures, most importantly flux balance analysis. Current studies on metabolic models mostly consider reaction fluxes in isolation. Based on a recently proposed metabolite-centric approach, we here describe a set of methods that enable the analysis and interpretation of flux distributions in an integrated metabolite-centric view. We demonstrate how this framework can be used for the refinement of genome-scale metabolic models. Results: We applied the metabolite-centric view developed here to the most recent metabolic reconstruction of Escherichia coli. By compiling the balance sheets of a small number of currency metabolites, we were able to fully characterise the energy metabolism as predicted by the model and to identify a possibility for model refinement in NADPH metabolism. Selected branch points were examined in detail in order to demonstrate how a metabolite-centric view allows identifying functional roles of metabolites. Fructose 6-phosphate aldolase and the sedoheptulose bisphosphate bypass were identified as enzymatic reactions that can carry high fluxes in the model but are unlikely to exhibit significant activity in vivo. Performing a metabolite essentiality analysis, unconstrained import and export of iron ions could be identified as potentially problematic for the quality of model predictions. Conclusions: The system-wide analysis of split ratios and branch points allows a much deeper insight into the metabolic network than reaction-centric analyses. Extending an earlier metabolite-centric approach, the methods introduced here establish an integrated metabolite-centric framework for the interpretation of flux distributions in genome-scale metabolic networks that can complement the classical reaction-centric framework. Analysing fluxes and their metabolic context simultaneously opens the door to systems biological interpretations that are not apparent from isolated reaction fluxes. Particularly powerful demonstrations of this are the analyses of the complete metabolic contexts of energy metabolism and the folate-dependent one-carbon pool presented in this work. Finally, a metabolite-centric view on flux distributions can guide the refinement of metabolic reconstructions for specific growth scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Flux sampling in genome-scale metabolic modeling of microbial communities
    Gelbach, Patrick E.
    Cetin, Handan
    Finley, Stacey D.
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [22] 13C metabolic flux analysis at a genome-scale
    Gopalakrishnan, Saratram
    Maranas, Costas D.
    METABOLIC ENGINEERING, 2015, 32 : 12 - 22
  • [23] A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology
    Senger, Ryan S.
    Yen, Jiun Y.
    Fong, Stephen S.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2014, 6 : 33 - 42
  • [24] Flux sampling in genome-scale metabolic modeling of microbial communities
    Patrick E. Gelbach
    Handan Cetin
    Stacey D. Finley
    BMC Bioinformatics, 25
  • [25] GEMtractor: extracting views into genome-scale metabolic models
    Scharm, Martin
    Wolkenhauer, Olaf
    Jalili, Mahdi
    Salehzadeh-Yazdi, Ali
    BIOINFORMATICS, 2020, 36 (10) : 3281 - 3282
  • [26] Current status and applications of genome-scale metabolic models
    Changdai Gu
    Gi Bae Kim
    Won Jun Kim
    Hyun Uk Kim
    Sang Yup Lee
    Genome Biology, 20
  • [27] Current status and applications of genome-scale metabolic models
    Gu, Changdai
    Kim, Gi Bae
    Kim, Won Jun
    Kim, Hyun Uk
    Lee, Sang Yup
    GENOME BIOLOGY, 2019, 20 (1)
  • [28] Network reduction methods for genome-scale metabolic models
    Singh, Dipali
    Lercher, Martin J.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (03) : 481 - 488
  • [29] Use of genome-scale microbial models for metabolic engineering
    Patil, KR
    Åkesson, M
    Nielsen, J
    CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (01) : 64 - 69
  • [30] Network reduction methods for genome-scale metabolic models
    Dipali Singh
    Martin J. Lercher
    Cellular and Molecular Life Sciences, 2020, 77 : 481 - 488