Computable symbolic dynamics

被引:8
|
作者
Cenzer, Douglas [1 ]
Dashti, S. Ali [1 ]
King, Jonathan L. F. [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
Computability; symbolic dynamics; Pi(0)(1) classes;
D O I
10.1002/malq.200710066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate computable subshifts and the connection with effective symbolic dynamics. It is shown that a decidable Pi(0)(1) class P is a subshift if and only if there exists a computable function F mapping 2(N) to 2(N) such that P is the set of itineraries of elements of 2(N). Pi(0)(1) subshifts are constructed in 2(N) and in 2(Z) which have no computable elements. We also consider the symbolic dynamics of maps on the unit interval. (C) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:460 / 469
页数:10
相关论文
共 50 条
  • [31] Infinite Traces and Symbolic Dynamics
    Wit Foryś
    Piotr Oprocha
    Theory of Computing Systems, 2009, 45 : 133 - 149
  • [32] WAVE NUMBERS AND SYMBOLIC DYNAMICS
    DING, EJ
    PHYSICAL REVIEW A, 1989, 39 (02): : 816 - 829
  • [33] Symbolic Dynamics of (-beta)-Expansions
    Dajani, K.
    Ramawadh, S. D.
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (02)
  • [34] The Conley index and symbolic dynamics
    Szymczak, A
    TOPOLOGY, 1996, 35 (02) : 287 - 299
  • [35] Symbolic dynamics and Arnold diffusion
    Cresson, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) : 269 - 292
  • [36] Symbolic dynamics of the stadium billiard
    Zheng, WM
    PHYSICAL REVIEW E, 1997, 56 (02): : 1556 - 1560
  • [37] Symbolic dynamics and convolutional codes
    Kitchens, B
    CODES, SYSTEMS, AND GRAPHICAL MODELS, 2001, 123 : 347 - 360
  • [38] Infinite Traces and Symbolic Dynamics
    Forys, Wit
    Oprocha, Piotr
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (01) : 133 - 149
  • [39] Discrete rotations and symbolic dynamics
    Berthe, Valerie
    Nouvel, Bertrand
    THEORETICAL COMPUTER SCIENCE, 2007, 380 (03) : 276 - 285
  • [40] SYMBOLIC DYNAMICS AND CHARACTERIZATION OF COMPLEXITY
    HAO, BL
    PHYSICA D, 1991, 51 (1-3): : 161 - 176