Computable symbolic dynamics

被引:8
|
作者
Cenzer, Douglas [1 ]
Dashti, S. Ali [1 ]
King, Jonathan L. F. [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
Computability; symbolic dynamics; Pi(0)(1) classes;
D O I
10.1002/malq.200710066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate computable subshifts and the connection with effective symbolic dynamics. It is shown that a decidable Pi(0)(1) class P is a subshift if and only if there exists a computable function F mapping 2(N) to 2(N) such that P is the set of itineraries of elements of 2(N). Pi(0)(1) subshifts are constructed in 2(N) and in 2(Z) which have no computable elements. We also consider the symbolic dynamics of maps on the unit interval. (C) WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:460 / 469
页数:10
相关论文
共 50 条
  • [21] A review of symbolic dynamics and symbolic reconstruction of dynamical systems
    Hirata, Yoshito
    Amigo, Jose M.
    CHAOS, 2023, 33 (05)
  • [22] NONLINEAR DYNAMICS AND SYMBOLIC DYNAMICS OF NEURAL NETWORKS
    LEWIS, JE
    GLASS, L
    NEURAL COMPUTATION, 1992, 4 (05) : 621 - 642
  • [23] A Computable Criterion for the Existence of Connecting Orbits in Autonomous Dynamics
    Brian A. Coomes
    Hüseyin Koçak
    Kenneth J. Palmer
    Journal of Dynamics and Differential Equations, 2016, 28 : 1081 - 1114
  • [24] Symbolic dynamics of animal interaction
    Porfiri, Maurizio
    Ruiz Marin, Manuel
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 435 : 145 - 156
  • [25] Symbolic dynamics of piecewise contractions
    Pires, Benito
    NONLINEARITY, 2019, 32 (12) : 4871 - 4889
  • [26] Symbolic dynamics of tree maps
    Kitchens, Bruce
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (01) : 71 - 76
  • [27] Symbolic dynamics of the hyperbolic potential
    Zheng, WM
    PHYSICAL REVIEW E, 1997, 56 (06): : 6317 - 6320
  • [28] ROTATION NUMBERS AND SYMBOLIC DYNAMICS
    Bowman, David
    Flek, Ross
    Markowsky, Greg
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 227 - 234
  • [29] SYMBOLIC DYNAMICS FOR HYPERBOLIC FLOWS
    BOWEN, R
    AMERICAN JOURNAL OF MATHEMATICS, 1973, 95 (02) : 429 - 459
  • [30] ON THE SYMBOLIC DYNAMICS OF THE HENON MAP
    GRASSBERGER, P
    KANTZ, H
    MOENIG, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24): : 5217 - 5230