A Visual Analytics GUI for Multigranular Spatio-Temporal Exploration and Comparison of Open Mobility Data

被引:2
|
作者
Robino, Camilla [1 ]
Di Rocco, Laura [1 ]
Guerrini, Giovanna [1 ]
Di Martino, Sergio [2 ]
Bertolotto, Michela [3 ]
机构
[1] Univ Genoa, Genoa, Italy
[2] Univ Napoli Federico II, Naples, Italy
[3] Univ Coll Dublin, Dublin, Ireland
关键词
D O I
10.1109/iV.2018.00059
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent technological developments in the fields of positioning and mobile communications gave rise to the availability of massive spalio-temporal open datasets about cities. A proper exploitation of these big datasets by decision makers of smart cities could be very useful to analyse and understand mobility patterns, with the final goal of easing many transportation problems, like parking search and traffic. While many research efforts have been aimed at defining powerful visual analytics tools for exploring vehicular trajectory data, to date almost no specifically tailored tools are available to analyse (on-street) parking data and dynamics. To fill this gap, in this paper we present the current state of an on-going research on the development of a visual analytics tool, meant to support decision makers of smart cities in performing multigranular spatio-temporal explorations of mobility open data, like those about parking. Moreover, the proposed GUI offers the possibility to overlay external spatio-temporal datasets as well as to customize the way this data is rendered, to get a better insight on the parking dynamics and its influencing factors.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 50 条
  • [31] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [32] Spatio-temporal visual analytics: a vision for 2020s
    Andrienko, Natalia
    Andrienko, Gennady
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 87 - 95
  • [33] A Visual Analytics Approach for Extracting Spatio-Temporal Urban Mobility Information from Mobile Network Traffic
    Sagl, Guenther
    Loidl, Martin
    Beinat, Euro
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2012, 1 (03): : 256 - 271
  • [34] Spatio-Temporal Data Augmentation for Visual Surveillance
    Kim, Jae-Yeul
    Ha, Jong-Eun
    IEEE ACCESS, 2021, 9 : 165014 - 165033
  • [35] Enabling Spatio-Temporal Search in Open Data
    Neumaier, Sebastian
    Polleres, Axel
    JOURNAL OF WEB SEMANTICS, 2019, 55 : 21 - 36
  • [36] A visual approach for spatio-temporal data mining
    Kechadi, M-Tahar
    Bertolotto, Michela
    IRI 2006: PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2006, : 504 - +
  • [37] Visual Analytics of Cyber Physical Data Streams Using Spatio-Temporal Radial Pixel Visualization
    Hao, M.
    Marwah, M.
    Mittelstadt, S.
    Janetzko, H.
    Keim, D.
    Dayal, U.
    Bash, C.
    Felix, C.
    Patel, C.
    Hsu, M.
    Chen, Y.
    Hund, M.
    VISUALIZATION AND DATA ANALYSIS 2013, 2013, 8654
  • [38] TimeTables: Embodied Exploration of Immersive Spatio-Temporal Data
    Zhang, Yidan
    Ens, Barrett
    Satriadi, Kadek Ananta
    Prouzeau, Arnaud
    Goodwin, Sarah
    2022 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES (VR 2022), 2022, : 599 - 605
  • [39] AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollution
    Xiaoqi Yue
    Dan Feng
    Desheng Sun
    Chao Liu
    Hongxing Qin
    Haibo Hu
    Journal of Visualization, 2024, 27 : 215 - 233
  • [40] A Spatio-Temporal Data Imputation Model for Supporting Analytics at the Edge
    Kolomvatsos, Kostas
    Papadopoulou, Panagiota
    Anagnostopoulos, Christos
    Hadjiefthymiades, Stathes
    DIGITAL TRANSFORMATION FOR A SUSTAINABLE SOCIETY IN THE 21ST CENTURY, 2019, 11701 : 138 - 150