Noninteracting many-particle quantum transport between finite reservoirs

被引:8
|
作者
Amato, Giulio [1 ,2 ,3 ]
Breuer, Heinz-Peter [1 ,4 ,5 ]
Wimberger, Sandro [2 ,3 ]
Rodriguez, Alberto [1 ,6 ]
Buchleitner, Andreas [1 ,4 ,5 ]
机构
[1] Albert Ludwigs Univ Freiburg, Phys Inst, Hermann Herder Str 3, D-79104 Freiburg, Germany
[2] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Campus Univ,Parco Area Sci 7-A, I-43124 Parma, Italy
[3] Ist Nazl Fis Nucl, Sez Milano Bicocca, Grp Collegato Parma, I-43124 Parma, Italy
[4] Albert Ludwigs Univ Freiburg, Freiburg Inst Adv Studies, Albertstr 19, D-79104 Freiburg, Germany
[5] EUCOR Ctr Quantum Sci & Quantum Comp, Hermann Herder Str 3, D-79104 Freiburg, Germany
[6] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain
关键词
SIMULATION;
D O I
10.1103/PhysRevA.102.022207
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a formalism to study many-particle quantum transport across a lattice locally connected to two finite, nonstationary (bosonic or fermionic) reservoirs, both of which are in a thermal state. We show that, for conserved total particle number, a system of nonlinear quantum-classical master equations describes the concurrent many-particle time evolution on the lattice and in the reservoirs. The finiteness of the reservoirs makes a macroscopic current emerge, which decreases exponentially in time and asymptotically drives the many-particle configuration into an equilibrium state where the particle flow ceases. We analytically derive the timescale of this equilibration process, and, furthermore, investigate the imprint of many-particle interferences on the transport process.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] TRANSPORT-EQUATIONS FOR MANY-PARTICLE SYSTEMS
    HANSCH, W
    MAHAN, GD
    PHYSICAL REVIEW B, 1983, 28 (04) : 1903 - 1922
  • [12] Computer Visualization of Many-Particle Quantum Dynamics
    Ozhigov, A. Y.
    FOUNDATIONS OF PROBABILITY AND PHYSICS - 5, 2009, 1101 : 359 - 362
  • [13] Evolution of correlations of quantum many-particle systems
    Gerasimenko, V. I.
    Shtyk, V. O.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [14] Quantum supremacy of many-particle thermal machines
    Jaramillo, J.
    Beau, M.
    del Campo, A.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [15] Macroscopic entanglement in many-particle quantum states
    Tichy, Malte C.
    Park, Chae-Yeun
    Kang, Minsu
    Jeong, Hyunseok
    Molmer, Klaus
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [16] Classical foundations of many-particle quantum chaos
    Gutkin, Boris
    Osipov, Vladimir
    NONLINEARITY, 2016, 29 (02) : 325 - 356
  • [17] QUANTUM MANY-PARTICLE SYSTEMS IN CURVED SPACETIME
    ICHONOSE, I
    PHYSICS LETTERS B, 1980, 94 (02) : 269 - 271
  • [18] Levy distribution in many-particle quantum systems
    Ponomarev, A. V.
    Denisov, S.
    Haenggi, P.
    PHYSICAL REVIEW A, 2010, 81 (04):
  • [19] Counting statistics of many-particle quantum walks
    Mayer, Klaus
    Tichy, Malte C.
    Mintert, Florian
    Konrad, Thomas
    Buchleitner, Andreas
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [20] Subdynamics of fluctuations in a many-particle quantum system
    Los, Victor F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (01):