Interpolation of matrices and matrix-valued densities: The unbalanced case

被引:11
|
作者
Chen, Yongxin [1 ]
Georgiou, Tryphon T. [2 ]
Tannenbaum, Allen [3 ,4 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[3] SUNY Stony Brook, Dept Comp Sci & Appl Math, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Optimal mass transport; quantum mechanics; matrix-valued densities; Fisher-Rao information; Wasserstein metric; HELLINGER-KANTOROVICH DISTANCE; OPTIMAL TRANSPORT; MASS-TRANSPORT; FLOW;
D O I
10.1017/S0956792518000219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose unbalanced versions of the quantum mechanical version of optimal mass transport that is based on the Lindblad equation describing open quantum systems. One of them is a natural interpolation framework between matrices and matrix-valued measures via a quantum mechanical formulation of Fisher-Rao information and the matricial Wasserstein distance, and the second is an interpolation between Wasserstein distance and Frobenius norm. We also give analogous results for the matrix-valued density measures, i.e., we add a spatial dependency on the density matrices. This might extend the applications of the framework to interpolating matrix-valued densities/images with unequal masses.
引用
收藏
页码:458 / 480
页数:23
相关论文
共 50 条
  • [1] Matrix-valued interpolation and hyperconvex sets
    Vern I. Paulsen
    Integral Equations and Operator Theory, 2001, 41 : 38 - 62
  • [2] THE NOTE ON MATRIX-VALUED RATIONAL INTERPOLATION
    朱晓临
    朱功勤
    Numerical Mathematics A Journal of Chinese Universities(English Series), 2005, (04) : 305 - 314
  • [3] Matrix-valued interpolation and hyperconvex sets
    Paulsen, VL
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) : 38 - 62
  • [4] Interpolation with uncoupled separable matrix-valued kernels
    Wittwar, Dominik
    Santin, Gabriele
    Haasdonk, Bernard
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2018, 11 : 23 - 39
  • [5] A Hybrid Matrix-valued Rational Interpolation Method
    Pan Baozhen
    Pan Lulu
    Su Rui
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 185 - 188
  • [6] On a general matrix-valued unbalanced optimal transport problem
    Li, Bowen
    Zou, Jun
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2025,
  • [7] Spectral factorization of a class of matrix-valued spectral densities
    Nurdin, Hendra I.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) : 1801 - 1821
  • [8] Analytic Interpolation With a Degree Constraint for Matrix-Valued Functions
    Takyar, Mir Shahrouz
    Georgiou, Tryphon T.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (05) : 1075 - 1088
  • [9] COMPUTING MATRIX-VALUED NEVANLINNA-PICK INTERPOLATION
    CHEN, GR
    KOC, CK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 204 : 253 - 263
  • [10] AN ESTIMATE OF APPROXIMATION OF A MATRIX-VALUED FUNCTION BY AN INTERPOLATION POLYNOMIAL
    Kurbatov, V. G.
    Kurbatova, I., V
    EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (01): : 86 - 94