Using the genetic algorithm to build optimal neural networks for fault-prone module detection

被引:12
|
作者
Hochman, R [1 ]
Khoshgoftaar, TM [1 ]
Allen, EB [1 ]
Hudepohl, JP [1 ]
机构
[1] FLORIDA ATLANTIC UNIV,DEPT COMP SCI & ENGN,BOCA RATON,FL 33431
来源
SEVENTH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS | 1996年
关键词
backpropagation; classification problem; fault-prone module; fitness function; genetic algorithm; neural network; simulated evolution; software engineering problem; software metrics; software quality;
D O I
10.1109/ISSRE.1996.558759
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [31] Outlier Removal Based on Third-Party Data in Fault-prone Module Prediction
    Nishiura K.
    Monden A.
    Computer Software, 2023, 40 (04) : 22 - 28
  • [32] A Cross-Project Evaluation of Text-based Fault-prone Module Prediction
    Mizuno, Osamu
    Hirata, Yukinao
    2014 6TH INTERNATIONAL WORKSHOP ON EMPIRICAL SOFTWARE ENGINEERING IN PRACTICE (IWESEP 2014), 2014, : 43 - 48
  • [33] Fault-Prone Software Requirements Specification Detection Using Ensemble Learning for Edge/Cloud Applications
    Muhamad, Fatin Nur Jannah
    Ab Hamid, Siti Hafizah
    Subramaniam, Hema
    Rashid, Razailin Abdul
    Fahmi, Faisal
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [34] Optimizing Gossiping for Asynchronous Fault-Prone IoT Networks With Memory and Battery Constraints
    Barroso-Fernandez, Carlos
    Jimenez, Ernesto
    Lopez-Presa, Jose Luis
    Moreno-Cuesta, Marta
    Xulvi-Brunet, Ramon
    IEEE ACCESS, 2024, 12 : 4701 - 4715
  • [35] Prediction of software fault-prone classes using ensemble random forest with adaptive synthetic sampling algorithm
    A. Balaram
    S. Vasundra
    Automated Software Engineering, 2022, 29
  • [36] Prediction of software fault-prone classes using ensemble random forest with adaptive synthetic sampling algorithm
    Balaram, A.
    Vasundra, S.
    AUTOMATED SOFTWARE ENGINEERING, 2022, 29 (01)
  • [37] Prediction of fault-prone software modules using a generic text discriminator
    Mizuno, Osamu
    Kikuno, Tohru
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (04): : 888 - 896
  • [38] Predict Fault-Prone Classes using the Complexity of UML Class Diagram
    Halim, Arwin
    2013 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), 2013, : 289 - 294
  • [39] Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    Samanta, B
    Al-Balushi, KR
    Al-Araimi, SA
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2003, 16 (7-8) : 657 - 665
  • [40] Experience in Predicting Fault-Prone Software Modules Using Complexity Metrics
    Yu, Liguo
    Mishra, Alok
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2012, 9 (04): : 421 - 433