Using the genetic algorithm to build optimal neural networks for fault-prone module detection

被引:12
|
作者
Hochman, R [1 ]
Khoshgoftaar, TM [1 ]
Allen, EB [1 ]
Hudepohl, JP [1 ]
机构
[1] FLORIDA ATLANTIC UNIV,DEPT COMP SCI & ENGN,BOCA RATON,FL 33431
来源
SEVENTH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS | 1996年
关键词
backpropagation; classification problem; fault-prone module; fitness function; genetic algorithm; neural network; simulated evolution; software engineering problem; software metrics; software quality;
D O I
10.1109/ISSRE.1996.558759
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [21] An empirical study on identifying fault-prone module in large switching system
    Hong, S
    Kim, K
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN-12), PROCEEDINGS, 1998, : 415 - 418
  • [22] Artificial neural networks and genetic algorithm for bearing fault detection
    B. Samanta
    K. R. Al-Balushi
    S. A. Al-Araimi
    Soft Computing, 2006, 10 : 264 - 271
  • [23] Artificial neural networks and genetic algorithm for bearing fault detection
    Samanta, B
    Al-Balushi, KR
    Al-Araimi, SA
    SOFT COMPUTING, 2006, 10 (03) : 264 - 271
  • [24] A Fault-prone Module Prediction Combining Past and Ongoing Test Results
    Hirose, Ryoichi
    Monden, Akito
    Nishiura, Kinari
    Tsunoda, Masateru
    Computer Software, 2024, 41 (04): : 67 - 73
  • [25] On Effects of Tokens in Source Code to Accuracy of Fault-prone Module Prediction
    Mizuno, Osamu
    2013 INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2013, : 103 - 108
  • [26] Using regression trees to classify fault-prone software modules
    Khoshgoftaar, TM
    Allen, EB
    Deng, JY
    IEEE TRANSACTIONS ON RELIABILITY, 2002, 51 (04) : 455 - 462
  • [27] Detection of fault-prone software modules during a spiral life cycle
    Khoshgoftaar, TM
    Allen, EB
    Halstead, R
    Trio, GP
    INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE, PROCEEDINGS, 1996, : 69 - 76
  • [28] Global Synchronization and Consensus Using Beeps in a Fault-Prone MAC
    Hounkanli, Kokouvi
    Miller, Avery
    Pelc, Andrzej
    ALGORITHMS FOR SENSOR SYSTEMS (ALGOSENSORS 2016), 2017, 10050 : 16 - 28
  • [29] An integrated fault diagnostics model using genetic algorithm and neural networks
    Sampath, S
    Singh, R
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2006, 128 (01): : 49 - 56
  • [30] Fault diagnosis and detection based on immune genetic algorithm with artificial neural networks
    Tan, T. (tantao99132@163.com), 1600, Advanced Institute of Convergence Information Technology, Myoungbo Bldg 3F,, Bumin-dong 1-ga, Seo-gu, Busan, 602-816, Korea, Republic of (07):