Detecting Defects of Steel Slabs Using Symbolic Regression

被引:0
|
作者
Gajdos, Petr [1 ]
Platos, Jan [1 ]
机构
[1] VSB Tech Univ Ostrava, Dept Comp Sci, FEECS, Ctr Excellence,IT4Innovat, Ostrava 70833, Czech Republic
关键词
Quality prediction; Symbolic Regression; Data Analysis; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quality of products of heavy industries plays an important role because of further usage of such products, e.g. bad quality of steel ingots can lead to a poor quality of metal plates and following wastrels in such processes, where these metal plates are consumed. Of course, single and relatively small mistake at the beginning of a complex process of product manufacturing can lead to great finance losses. This article describes a method of defects detection and quality prediction of steel slabs, which is based on soft-computing methods. The proposed method helps us to identify possible defects of slabs still in the process of their manufacturing. Experiment with real data illustrates applicability of the method.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [41] EFFECT OF STEEL CHEMISTRY AND OPERATING PARAMETERS ON SURFACE-DEFECTS IN CONTINUOUSLY CAST SLABS
    IRVING, WR
    PERKINS, A
    GRAY, R
    IRONMAKING & STEELMAKING, 1984, 11 (03) : 146 - 151
  • [42] Priors For Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2402 - 2411
  • [43] Exhaustive Symbolic Regression
    Bartlett, Deaglan J.
    Desmond, Harry
    Ferreira, Pedro G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 950 - 964
  • [44] ACCURACY IN SYMBOLIC REGRESSION
    Korns, Michael F.
    GENETIC PROGRAMMING THEORY AND PRACTICE IX, 2011, : 129 - 151
  • [45] A review of "Symbolic Regression"
    Cava, William G. La
    Kronberger, Gabriel
    Burlacu, Bogdan
    Kommenda, Michael
    Winkler, Stephan M.
    Affenzeller, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2025, 26 (01)
  • [46] SYMBOLIC REGRESSION WITH SAMPLING
    Kommenda, Michael
    Kronberger, Gabriel K.
    Affenzeller, Michael
    Winkler, Stephan M.
    Feilmayr, Christoph
    Wagner, Stefan
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 13 - 18
  • [47] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [48] Detecting Hardware Trojans using Model Guided Symbolic Execution
    Dai, Ruochen
    Yavuz, Tuba
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 569 - 573
  • [49] Detecting Bank Conflict of GPU Programs Using Symbolic Execution
    Hamaya, Koki
    Yamane, Satoshi
    2016 IEEE 5TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS, 2016,
  • [50] Methods of detecting defects using infrared thermography
    Kolecka, Olga
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 101 - 104