CONSISTENT DENSITY ESTIMATORS;
CONTINUOUS-TIME MODELS;
TERM STRUCTURE;
DIFFUSION-PROCESSES;
LIMIT-THEOREMS;
ARCH(1) ERRORS;
INTEREST-RATES;
SERIES;
INFERENCE;
VARIABLES;
D O I:
10.1017/S0266466614000681
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
The paper considers testing parametric assumptions on the conditional mean and variance functions for nonlinear autoregressive models. To this end, we compare the kernel density estimate of the marginal density of the process with a convolution-type density estimate. It is shown that, interestingly, the latter estimate has a parametric (root n) rate of convergence, thus substantially improving the classical kernel density estimates whose rates of convergence are much inferior. Our results are confirmed by a simulation study for threshold autoregressive processes and autoregressive conditional heteroskedastic processes.
机构:
Purdue Univ, Dept Sociol, 700 W State St, W Lafayette, IN 47907 USAPurdue Univ, Dept Sociol, 700 W State St, W Lafayette, IN 47907 USA
Bauldry, Shawn
Bollen, Kenneth A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Psychol & Neurosci, Chapel Hill, NC 27515 USA
Univ N Carolina, Dept Sociol, Chapel Hill, NC 27515 USAPurdue Univ, Dept Sociol, 700 W State St, W Lafayette, IN 47907 USA