PARAMETRIC SPECIFICATION TEST FOR NONLINEAR AUTOREGRESSIVE MODELS

被引:3
|
作者
Kim, Kun Ho [1 ]
Zhang, Ting [2 ]
Wu, Wei Biao [3 ]
机构
[1] Hanyang Univ, Seoul, South Korea
[2] Boston Univ, Boston, MA 02215 USA
[3] Univ Chicago, Chicago, IL 60637 USA
关键词
CONSISTENT DENSITY ESTIMATORS; CONTINUOUS-TIME MODELS; TERM STRUCTURE; DIFFUSION-PROCESSES; LIMIT-THEOREMS; ARCH(1) ERRORS; INTEREST-RATES; SERIES; INFERENCE; VARIABLES;
D O I
10.1017/S0266466614000681
中图分类号
F [经济];
学科分类号
02 ;
摘要
The paper considers testing parametric assumptions on the conditional mean and variance functions for nonlinear autoregressive models. To this end, we compare the kernel density estimate of the marginal density of the process with a convolution-type density estimate. It is shown that, interestingly, the latter estimate has a parametric (root n) rate of convergence, thus substantially improving the classical kernel density estimates whose rates of convergence are much inferior. Our results are confirmed by a simulation study for threshold autoregressive processes and autoregressive conditional heteroskedastic processes.
引用
收藏
页码:1078 / 1101
页数:24
相关论文
共 50 条