Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence

被引:1
|
作者
Lee, Chun-Ho [1 ]
Liu, Wei-Ting [2 ]
Lou, Yu-Sheng [3 ]
Lin, Chin-Sheng [2 ]
Fang, Wen-Hui [4 ]
Lee, Chia-Cheng [5 ,6 ]
Ho, Ching-Liang [7 ]
Wang, Chih-Hung [8 ,9 ]
Lin, Chin [1 ,3 ,10 ]
机构
[1] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[2] Triserv Gen Hosp, Natl Def Med Ctr, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[3] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[4] Triserv Gen Hosp, Natl Def Med Ctr, Dept Family & Community Med, Dept Internal Med, Taipei, Taiwan
[5] Triserv Gen Hosp, Natl Def Med Ctr, Med Informat Off, Taipei, Taiwan
[6] Triserv Gen Hosp, Natl Def Med Ctr, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[7] Triserv Gen Hosp, Natl Def Med Ctr, Div Hematol & Oncol, Taipei, Taiwan
[8] Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[9] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[10] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei 114, Taiwan
来源
DIGITAL HEALTH | 2022年 / 8卷
关键词
Artificial intelligence; electrocardiogram; deep learning; ejection fraction; continuous numerical prediction; degree of confidence; HEART-FAILURE; SYSTOLIC DYSFUNCTION; DIAGNOSIS; CRITERIA; OUTCOMES;
D O I
10.1177/20552076221143249
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundArtificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. ObjectiveThe study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. MethodsThe study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction <= 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. ResultsThe area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. ConclusionThe deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] An explainable artificial intelligence-enabled electrocardiogram analysis model for the classification of reduced left ventricular function
    Katsushika, Susumu
    Kodera, Satoshi
    Sawano, Shinnosuke
    Shinohara, Hiroki
    Setoguchi, Naoto
    Tanabe, Kengo
    Higashikuni, Yasutomi
    Takeda, Norifumi
    Fujiu, Katsuhito
    Daimon, Masao
    Akazawa, Hiroshi
    Morita, Hiroyuki
    Komuro, Issei
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (03): : 254 - 264
  • [2] Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
    Yao, Xiaoxi
    Rushlow, David R.
    Inselman, Jonathan W.
    McCoy, Rozalina G.
    Thacher, Thomas D.
    Behnken, Emma M.
    Bernard, Matthew E.
    Rosas, Steven L.
    Akfaly, Abdulla
    Misra, Artika
    Molling, Paul E.
    Krien, Joseph S.
    Foss, Randy M.
    Barry, Barbara A.
    Siontis, Konstantinos C.
    Kapa, Suraj
    Pellikka, Patricia A.
    Lopez-Jimenez, Francisco
    Attia, Zachi I.
    Shah, Nilay D.
    Friedman, Paul A.
    Noseworthy, Peter A.
    NATURE MEDICINE, 2021, 27 (05) : 815 - +
  • [3] A COMPREHENSIVE ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM INTERPRETATION PROGRAM
    Kashou, Anthony
    Ko, Wei-Yin
    Attia, Zachi Itzhak
    Cohen, Michall
    Friedman, Paul
    Noseworthy, Peter
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3504 - 3504
  • [4] Clinical perspectives on the adoption of the artificial intelligence-enabled electrocardiogram
    Khurshid, Shaan
    JOURNAL OF ELECTROCARDIOLOGY, 2023, 81 : 142 - 145
  • [5] The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients
    Kashou, Anthony H.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Attia, Zachi I.
    Kapa, Suraj
    Friedman, Paul A.
    Jentzer, Jacob C.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 339 : 54 - 55
  • [6] Artificial Intelligence-Enabled Electrocardiogram Predicted Left Ventricle Diameter as an Independent Risk Factor of Long-Term Cardiovascular Outcome in Patients With Normal Ejection Fraction
    Chen, Hung-Yi
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Ho, Ching-Liang
    Wang, Chih-Hung
    Lin, Chin
    FRONTIERS IN MEDICINE, 2022, 9
  • [7] Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure
    Eunjung Lee
    Saki Ito
    William R. Miranda
    Francisco Lopez-Jimenez
    Garvan C. Kane
    Samuel J. Asirvatham
    Peter A. Noseworthy
    Paul A. Friedman
    Rickey E. Carter
    Barry A. Borlaug
    Zachi I. Attia
    Jae K. Oh
    npj Digital Medicine, 7
  • [8] Assessment of left ventricular ejection fraction in artificial intelligence based on left ventricular opacification
    Zhu, Ye
    Zhang, Zisang
    Ma, Junqiang
    Zhang, Yiwei
    Zhu, Shuangshuang
    Liu, Manwei
    Zhang, Ziming
    Wu, Chun
    Xu, Chunyan
    Wu, Anjun
    Sun, Chenchen
    Yang, Xin
    Wang, Yonghuai
    Ma, Chunyan
    Cheng, Jun
    Ni, Dong
    Wang, Jing
    Xie, Mingxing
    Xue, Wufeng
    Zhang, Li
    DIGITAL HEALTH, 2024, 10
  • [9] Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure
    Lee, Eunjung
    Ito, Saki
    Miranda, William R.
    Lopez-Jimenez, Francisco
    Kane, Garvan C.
    Asirvatham, Samuel J.
    Noseworthy, Peter A.
    Friedman, Paul A.
    Carter, Rickey E.
    Borlaug, Barry A.
    Attia, Zachi I.
    Oh, Jae K.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [10] DETECTION OF AORTIC STENOSIS USING AN ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM
    Shelly, Michal
    Attia, Zachi Itzhak
    Ko, Wei-Yin
    Ito, Saki
    Essayagh, Benjamin
    Michelena, Hector I.
    Carter, Rickey
    Sarano, Maurice
    Friedman, Paul
    Oh, Jae K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 2115 - 2115