The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients

被引:5
|
作者
Kashou, Anthony H. [1 ]
Noseworthy, Peter A. [2 ,3 ]
Lopez-Jimenez, Francisco [2 ]
Attia, Zachi I. [2 ]
Kapa, Suraj [2 ]
Friedman, Paul A. [2 ]
Jentzer, Jacob C. [2 ,4 ,5 ,6 ]
机构
[1] Mayo Clin, Dept Internal Med, Rochester, MN USA
[2] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[3] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deli, Rochester, MN USA
[4] Mayo Clin, Dept Internal Med, Div Pulm & Crit Care Med, Rochester, MN 55901 USA
[5] Mayo Clin, Dept Internal Med, Div Pulm & Crit Care Med, Rochester, MN 55905 USA
[6] Mayo Clin, Dept Cardiovasc Med, Med, 200 First Street SW, Rochester, MN 55905 USA
关键词
Atrial fibrillation; Artificial intelligence; Electrocardiogram; Cardiac intensive care unit; Left ventricular systolic dysfunction; Echocardiography;
D O I
10.1016/j.ijcard.2021.07.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The presence of left ventricular systolic dysfunction (LVSD) alters clinical management and prognosis in most acute and chronic cardiovascular conditions. While transthoracic echocardiography (TTE) remains the most common diagnostic tool to screen for LVSD, it is operator-dependent, time-consuming, effort-intensive, and relatively expensive. Recent work has demonstrated the ability of an artificial intelligence-augment ECG (AIECG) model to accurately predict LVSD in critical intensive care unit (CICU) patients. We demonstrate that the AI-ECG algorithm can maintain its performance in these patients with and without AF despite their clinical differences. An AI-ECG algorithm can serve as a non-invasive, inexpensive, and rapid screening tool for early detection of LVSD in resource-limited settings, and potentially expedite clinical decision making and guidelinedirected therapies in the acute care setting.
引用
收藏
页码:54 / 55
页数:2
相关论文
共 50 条
  • [1] The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients (vol 339, pg 54, 2021)
    Kashou, A. H.
    Noseworthy, P. A.
    Lopez-Jimenez, F.
    Attia, Z. I.
    Kapa, S.
    Friedman, P. A.
    Jentzer, J. C.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 348 : 125 - 125
  • [2] Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence
    Lee, Chun-Ho
    Liu, Wei-Ting
    Lou, Yu-Sheng
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Ho, Ching-Liang
    Wang, Chih-Hung
    Lin, Chin
    DIGITAL HEALTH, 2022, 8
  • [3] Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure
    Eunjung Lee
    Saki Ito
    William R. Miranda
    Francisco Lopez-Jimenez
    Garvan C. Kane
    Samuel J. Asirvatham
    Peter A. Noseworthy
    Paul A. Friedman
    Rickey E. Carter
    Barry A. Borlaug
    Zachi I. Attia
    Jae K. Oh
    npj Digital Medicine, 7
  • [4] Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure
    Lee, Eunjung
    Ito, Saki
    Miranda, William R.
    Lopez-Jimenez, Francisco
    Kane, Garvan C.
    Asirvatham, Samuel J.
    Noseworthy, Peter A.
    Friedman, Paul A.
    Carter, Rickey E.
    Borlaug, Barry A.
    Attia, Zachi I.
    Oh, Jae K.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [5] AN ARTIFICIAL INTELLIGENCE-ENABLED ECG ALGORITHM FOR LEFT VENTRICULAR DIASTOLIC FUNCTION ASSESSMENT
    Lee, Eunjung
    Ito, Saki
    Kane, Garvan C.
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Attia, Zachi Itzhak
    Oh, Jae K.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 4023 - 4023
  • [6] Hyperdynamic left ventricular ejection fraction in the intensive care unit
    Paonessa, Joseph R.
    Brennan, Thomas
    Pimentel, Marco
    Steinhaus, Daniel
    Feng, Mengling
    Celi, Leo Anthony
    CRITICAL CARE, 2015, 19
  • [7] Hyperdynamic left ventricular ejection fraction in the intensive care unit
    Joseph R. Paonessa
    Thomas Brennan
    Marco Pimentel
    Daniel Steinhaus
    Mengling Feng
    Leo Anthony Celi
    Critical Care, 19
  • [8] Prognostic Value of Artificial Intelligence-Enabled ECG for Increased Left Ventricular Filling Pressure
    Lee, Eunjung
    Miranda, William
    Lopez-Jimenez, Francisco
    Yu, Hee Tae
    Friedman, Paul
    Attia, Zachi
    Oh, Jae K.
    CIRCULATION, 2023, 148
  • [9] An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm
    Sheng-Nan Chang
    Yu-Heng Tseng
    Jien-Jiun Chen
    Fu-Chun Chiu
    Chin-Feng Tsai
    Juey-Jen Hwang
    Yi-Chih Wang
    Chia-Ti Tsai
    European Journal of Medical Research, 27
  • [10] An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm
    Chang, Sheng-Nan
    Tseng, Yu-Heng
    Chen, Jien-Jiun
    Chiu, Fu-Chun
    Tsai, Chin-Feng
    Hwang, Juey-Jen
    Wang, Yi-Chih
    Tsai, Chia-Ti
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2022, 27 (01)