Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence

被引:1
|
作者
Lee, Chun-Ho [1 ]
Liu, Wei-Ting [2 ]
Lou, Yu-Sheng [3 ]
Lin, Chin-Sheng [2 ]
Fang, Wen-Hui [4 ]
Lee, Chia-Cheng [5 ,6 ]
Ho, Ching-Liang [7 ]
Wang, Chih-Hung [8 ,9 ]
Lin, Chin [1 ,3 ,10 ]
机构
[1] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[2] Triserv Gen Hosp, Natl Def Med Ctr, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[3] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[4] Triserv Gen Hosp, Natl Def Med Ctr, Dept Family & Community Med, Dept Internal Med, Taipei, Taiwan
[5] Triserv Gen Hosp, Natl Def Med Ctr, Med Informat Off, Taipei, Taiwan
[6] Triserv Gen Hosp, Natl Def Med Ctr, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[7] Triserv Gen Hosp, Natl Def Med Ctr, Div Hematol & Oncol, Taipei, Taiwan
[8] Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[9] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[10] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei 114, Taiwan
来源
DIGITAL HEALTH | 2022年 / 8卷
关键词
Artificial intelligence; electrocardiogram; deep learning; ejection fraction; continuous numerical prediction; degree of confidence; HEART-FAILURE; SYSTOLIC DYSFUNCTION; DIAGNOSIS; CRITERIA; OUTCOMES;
D O I
10.1177/20552076221143249
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundArtificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. ObjectiveThe study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. MethodsThe study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction <= 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. ResultsThe area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. ConclusionThe deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An artificial intelligence-enabled Holter algorithm to identify patients with ventricular tachycardia by analysing their electrocardiogram during sinus rhythm
    Gendelman, Sheina
    Zvuloni, Eran
    Oster, Julien
    Suleiman, Mahmoud
    Derman, Raphael
    Behar, Joachim A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (04): : 409 - 415
  • [22] Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis
    Ito, Saki
    Cohen-Shelly, Michal
    Attia, Zachi, I
    Lee, Eunjung
    Friedman, Paul A.
    Nkomo, Vuyisile T.
    Michelena, Hector, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Oh, Jae K.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (03): : 196 - 206
  • [23] Detection of Systolic Dysfunction in Pediatric Patients Using an Artificial Intelligence-Enabled Electrocardiogram
    Anjewierden, Scott
    O'Sullivan, Donnchadh
    Greason, Grace
    Attia, Zachi
    Lopez-Jimenez, Francisco
    Friedman, Paul
    Noseworthy, Peter A.
    Anderson, Jason
    Kashou, Anthony H.
    CIRCULATION, 2023, 148
  • [24] Risk stratification of coronary artery disease using the artificial intelligence-enabled electrocardiogram
    Awasthi, S.
    Sachadeva, N.
    Abbou, R.
    Gupta, Y.
    Anto, A.
    Asfahan, S.
    Hegstrom, L.
    Alger, H.
    Medina-Inojosa, J.
    Mccully, R.
    Lerman, A.
    Friedman, P.
    Attia, Z.
    Soundararajan, V.
    Lopez-Jiminez, F.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [25] The electrocardiogram in athletes with left ventricular dilatation and reduced ejection fraction
    Jorstad, Harald T.
    Rienks, Rienk
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2022, 52 (10)
  • [26] The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients (vol 339, pg 54, 2021)
    Kashou, A. H.
    Noseworthy, P. A.
    Lopez-Jimenez, F.
    Attia, Z. I.
    Kapa, S.
    Friedman, P. A.
    Jentzer, J. C.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 348 : 125 - 125
  • [27] Detection of Left Ventricular Systolic Dysfunction Using an Artificial Intelligence-Enabled Chest X-Ray
    Hsiang, Chih-Weim
    Lin, Chin
    Liu, Wen-Cheng
    Lin, Chin-Sheng
    Chang, Wei-Chou
    Hsu, Hsian-He
    Huang, Guo-Shu
    Lou, Yu-Sheng
    Lee, Chia-Cheng
    Wang, Chih-Hung
    Fang, Wen-Hui
    CANADIAN JOURNAL OF CARDIOLOGY, 2022, 38 (06) : 763 - 773
  • [28] TESTING THE REAL-WORLD UTILITY OF BAYES' THEOREM WHEN USING AN ARTIFICIAL INTELLIGENCE-ENABLED ELECTROCARDIOGRAM ALGORITHM FOR DETECTION OF LEFT VENTRICULAR SYSTOLIC DYSFUNCTION
    Medina-Inojosa, Betsy J.
    Harmon, David
    Medina-Inojosa, Jose
    Carter, Rickey E.
    Attia, Zachi Itzhak
    Friedman, Paul A.
    Lopez-Jimenez, Francisco
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2329 - 2329
  • [29] Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis
    Chen, Hung-Yi
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lou, Yu-Sheng
    Cheng, Cheng-Chung
    Lee, Chia-Cheng
    Lin, Chin
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [30] Detection of Left Atrial Myopathy Using Artificial Intelligence-Enabled Electrocardiography
    Verbrugge, Frederik H.
    Reddy, Yogesh N. V.
    Attia, Zachi I.
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Kapa, Suraj
    Borlaug, Barry A.
    CIRCULATION-HEART FAILURE, 2022, 15 (01) : E008176