Identifiability for Linearized Sine-Gordon Equation

被引:1
|
作者
Ha, J. [1 ]
Gutman, S. [2 ]
机构
[1] Korea Univ Technol & Educ, Sch Liberal Arts, Cheonan 330708, South Korea
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Identification; identifiability; sine-Gordon equation; CONSTANT PARAMETERS; HEAT-CONDUCTION; IDENTIFICATION; SYSTEMS;
D O I
10.1051/mmnp/20138107
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper presents theoretical and numerical results on the identifiability, i.e. the unique identification for the one-dimensional sine-Gordon equation. The identifiability for nonlinear sine-Gordon equation remains an open question. In this paper we establish the identifiability for a linearized sine-Gordon problem. Our method consists of a careful analysis of the Laplace and Fourier transforms of the observation of the system, conducted at a single point. Numerical results based on the best fit to data method confirm that the identification is unique for a wide choice of initial approximations for the sought test parameters. Numerical results compare the identification for the nonlinear and the linearized problems.
引用
收藏
页码:106 / 121
页数:16
相关论文
共 50 条
  • [41] The sine-Gordon equation on time scales
    Cieslinski, Jan L.
    Nikiciuk, Tomasz
    Waskiewicz, Kamil
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (02) : 1219 - 1230
  • [42] Discretization of a sine-Gordon type equation
    Ohta, Y.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 225 - 230
  • [43] On a class of solutions of the sine-Gordon equation
    Kovalyov, Mikhail
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (49)
  • [44] A simple treatment of the sine-Gordon equation
    Chen, SR
    Huang, NN
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) : 2554 - 2566
  • [45] STABILITY PROBLEM FOR SINE-GORDON EQUATION
    CALLEGAR.AJ
    REISS, EL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A642 - &
  • [46] ASYMPTOTIC SOLITONS OF THE SINE-GORDON EQUATION
    KOTLYAROV, VP
    THEORETICAL AND MATHEMATICAL PHYSICS, 1989, 80 (01) : 679 - 689
  • [47] Perturbation theory for Sine-Gordon equation
    Tang, Yi
    Yan, Jia-Ren
    Zhang, Kai-Wang
    Chen, Zhen-Hua
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (03): : 483 - 484
  • [48] Excited state Destri De Vega equation for sine-Gordon and restricted sine-Gordon models
    Fioravanti, D
    Mariottini, A
    Quattrini, E
    Ravanini, F
    PHYSICS LETTERS B, 1997, 390 (1-4) : 243 - 251
  • [49] Semiclassical spectral confinement for the sine-Gordon equation
    Buckingham, Robert
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1030 - 1037
  • [50] An oscillatory solution for damping Sine-Gordon equation
    He, WZ
    Xu, LS
    Hu, ZH
    Zou, FW
    CHINESE PHYSICS LETTERS, 1999, 16 (12): : 859 - 860