Identifiability for Linearized Sine-Gordon Equation

被引:1
|
作者
Ha, J. [1 ]
Gutman, S. [2 ]
机构
[1] Korea Univ Technol & Educ, Sch Liberal Arts, Cheonan 330708, South Korea
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
Identification; identifiability; sine-Gordon equation; CONSTANT PARAMETERS; HEAT-CONDUCTION; IDENTIFICATION; SYSTEMS;
D O I
10.1051/mmnp/20138107
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper presents theoretical and numerical results on the identifiability, i.e. the unique identification for the one-dimensional sine-Gordon equation. The identifiability for nonlinear sine-Gordon equation remains an open question. In this paper we establish the identifiability for a linearized sine-Gordon problem. Our method consists of a careful analysis of the Laplace and Fourier transforms of the observation of the system, conducted at a single point. Numerical results based on the best fit to data method confirm that the identification is unique for a wide choice of initial approximations for the sought test parameters. Numerical results compare the identification for the nonlinear and the linearized problems.
引用
收藏
页码:106 / 121
页数:16
相关论文
共 50 条
  • [21] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [22] Integrable discretizations of the sine-Gordon equation
    Boiti, M
    Pempinelli, F
    Prinari, B
    Spire, A
    INVERSE PROBLEMS, 2002, 18 (05) : 1309 - 1324
  • [23] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):
  • [24] CANONICAL TRANSFORMATION FOR SINE-GORDON EQUATION
    KODAMA, Y
    WADATI, M
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (01): : 342 - 343
  • [25] COMMENTS ON THE PERTURBED SINE-GORDON EQUATION
    PAPASTAMATIOU, NJ
    MATSUMOTO, H
    UMEZAWA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2205 - 2207
  • [26] On robust stability of sine-Gordon equation
    Efimov, Denis
    Fridman, Emilia
    Richard, Jean-Pierre
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7001 - 7006
  • [27] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    Science China Mathematics, 1997, (10) : 1028 - 1035
  • [28] POSITRON SOLUTIONS OF THE SINE-GORDON EQUATION
    BEUTLER, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3098 - 3109
  • [29] METHOD FOR SOLVING SINE-GORDON EQUATION
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    PHYSICAL REVIEW LETTERS, 1973, 30 (25) : 1262 - 1264
  • [30] THE GURSA PROBLEM FOR THE SINE-GORDON EQUATION
    SAKHNOVICH, AL
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (12): : 13 - 17