Evacuation Planning Optimization Based on a Multi-Objective Artificial Bee Colony Algorithm

被引:18
|
作者
Niyomubyeyi, Olive [1 ,2 ]
Pilesjo, Petter [1 ,3 ]
Mansourian, Ali [1 ,3 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosyst Sci, SE-22100 Lund, Sweden
[2] Univ Rwanda, Coll Sci & Technol, Ctr Geog Informat Syst & Remote Sensing, Kigali 4285, Rwanda
[3] Lund Univ, Ctr Middle Eastern Studies, SE-22100 Lund, Sweden
关键词
evacuation planning; multi-objective artificial bee colony; spatial optimization; swarm intelligence; geographic information system (GIS); EVOLUTIONARY OPTIMIZATION; SPATIAL OPTIMIZATION; EMERGENCY SHELTERS; ALLOCATION; MODEL; NAVIGATION; AREA;
D O I
10.3390/ijgi8030110
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evacuation is an important activity for reducing the number of casualties and amount of damage in disaster management. Evacuation planning is tackled as a spatial optimization problem. The decision-making process for evacuation involves high uncertainty, conflicting objectives, and spatial constraints. This study presents a Multi-Objective Artificial Bee Colony (MOABC) algorithm, modified to provide a better solution to the evacuation problem. The new approach combines random swap and random insertion methods for neighborhood search, the two-point crossover operator, and the Pareto-based method. For evacuation planning, two objective functions were considered to minimize the total traveling distance from an affected area to shelters and to minimize the overload capacity of shelters. The developed model was tested on real data from the city of Kigali, Rwanda. From computational results, the proposed model obtained a minimum fitness value of 5.80 for capacity function and 8.72 x 10(8) for distance function, within 161 s of execution time. Additionally, in this research we compare the proposed algorithm with Non-Dominated Sorting Genetic Algorithm II and the existing Multi-Objective Artificial Bee Colony algorithm. The experimental results show that the proposed MOABC outperforms the current methods both in terms of computational time and better solutions with minimum fitness values. Therefore, developing MOABC is recommended for applications such as evacuation planning, where a fast-running and efficient model is needed.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [31] Artificial Bee Colony Induced Multi-objective Optimization in Presence of Noise
    Rakshit, Pratyusha
    Konar, Amit
    Nagar, Atulya K.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3176 - 3183
  • [32] A hybrid multi-objective artificial bee colony algorithm for burdening optimization of copper strip production
    Zhang, Hao
    Zhu, Yunlong
    Zou, Wenping
    Yan, Xiaohui
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (06) : 2578 - 2591
  • [33] Implementation of Parallel Multi-objective Artificial Bee Colony Algorithm Based on Spark Platform
    Li, Chunfeng
    Wen, Tingxi
    Dong, Huailin
    Wu, Qingfeng
    Zhang, Zhongnan
    2016 11TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE), 2016, : 592 - 597
  • [34] A novel sparse reconstruction method based on multi-objective Artificial Bee Colony algorithm
    Erkoc, Murat Emre
    Karaboga, Nurhan
    SIGNAL PROCESSING, 2021, 189
  • [35] A new multi-objective artificial bee colony algorithm based on reference point and opposition
    Xiao, Songyi
    Wang, Wenjun
    Wang, Hui
    Huang, Zhikai
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2022, 19 (01) : 18 - 28
  • [36] Multi-objective Optimization Model Based on Heuristic Ant Colony Algorithm for Emergency Evacuation
    Duan, Pengfei
    Xiong, Shengwu
    Jiang, Hongxin
    2012 15TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2012, : 1258 - 1262
  • [37] Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights
    Yahya, M.
    Saka, M. P.
    AUTOMATION IN CONSTRUCTION, 2014, 38 : 14 - 29
  • [38] A Multi-Objective Optimization Approach for Evacuation Planning
    Yuan, Fang
    Han, Lee D.
    1ST CONFERENCE ON EVACUATION MODELING AND MANAGEMENT, 2010, 3 : 217 - 227
  • [39] A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels
    Ghashochi-Bargh, H.
    Sadr, M. H.
    STRUCTURAL ENGINEERING AND MECHANICS, 2014, 52 (06) : 1209 - 1224
  • [40] Application research of multi-objective Artificial Bee Colony optimization algorithm for parameters calibration of hydrological model
    Jiuyuan Huo
    Liqun Liu
    Neural Computing and Applications, 2019, 31 : 4715 - 4732