A novel sparse reconstruction method based on multi-objective Artificial Bee Colony algorithm

被引:13
|
作者
Erkoc, Murat Emre [1 ]
Karaboga, Nurhan [1 ]
机构
[1] Erciyes Univ, Elect & Elect Engn Dept, TR-38039 Kayseri, Turkey
关键词
Compressed sensing; Multi-objective optimization; Sparse reconstruction; Artificial Bee colony algorithm; EVOLUTIONARY ALGORITHMS; THRESHOLDING ALGORITHM; SIGNAL RECONSTRUCTION; OPTIMIZATION; DECOMPOSITION; SHRINKAGE; RECOVERY;
D O I
10.1016/j.sigpro.2021.108283
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressed sensing is a signal processing method that performs the compressing and sensing processes at the same time. Sparse signal reconstruction is one of the most important issues of compressed sensing. The developments in sparse signal reconstruction methods directly affect the performance of the com-pressed sensing process. Many sparse signal reconstruction methods have been proposed in the literature. In general, these algorithms are classified as convex optimization, non-convex optimization, and greedy algorithms. In addition, multi-objective optimization algorithms have started to be used in sparse sig-nal reconstruction lately. A sparse signal reconstruction method based on a Multi-objective Artificial Bee Colony algorithm is proposed in this study. The proposed algorithm optimizes the sparsity and measure-ment error at the same time. Furthermore, it uses the iterative half thresholding algorithm to improve the convergence acceleration of the method. The proposed method was evaluated by using various test signals. Additionally, it was compared with other sparse signal reconstruction algorithms. According to the obtained results, the proposed method has some superiority over the compared algorithms. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A multi-objective artificial bee colony algorithm
    Akbari, Reza
    Hedayatzadeh, Ramin
    Ziarati, Koorush
    Hassanizadeh, Bahareh
    SWARM AND EVOLUTIONARY COMPUTATION, 2012, 2 : 39 - 52
  • [2] Multi-objective Artificial Bee Colony algorithm
    Wang, Yanjiao
    Li, Yaojie
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 1289 - 1293
  • [3] An elitism based multi-objective artificial bee colony algorithm
    Xiang, Yi
    Zhou, Yuren
    Liu, Hailin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 245 (01) : 168 - 193
  • [4] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [5] ABeeMap: A Mapping Algorithm based on Multi-Objective Artificial Bee Colony
    Souza, V. L.
    Silva-Filho, A. G.
    Wanderely, V. C.
    PROCEEDINGS 2015 25TH INTERNATIONAL WORKSHOP ON POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION, 2015, : 17 - 24
  • [6] A Multi-Objective Artificial Bee Colony Algorithm Combined with a Local Search Method
    Tang, Langping
    Zhou, Yuren
    Xiang, Yi
    Lai, Xinsheng
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2016, 25 (03)
  • [7] A multi-objective artificial bee colony algorithm based on division of the searching space
    Zhong, Yu-Bin
    Xiang, Yi
    Liu, Hai-Lin
    APPLIED INTELLIGENCE, 2014, 41 (04) : 987 - 1011
  • [8] An Artificial Bee Colony Algorithm Based on a Multi-Objective Framework for Supplier Integration
    Farooq, Muhammad Umer
    Salman, Qazi
    Arshad, Muhammad
    Khan, Imran
    Akhtar, Rehman
    Kim, Sunghwan
    APPLIED SCIENCES-BASEL, 2019, 9 (03):
  • [9] A multi-objective artificial bee colony algorithm based on division of the searching space
    Yu-Bin Zhong
    Yi Xiang
    Hai-Lin Liu
    Applied Intelligence, 2014, 41 : 987 - 1011
  • [10] Evacuation Planning Optimization Based on a Multi-Objective Artificial Bee Colony Algorithm
    Niyomubyeyi, Olive
    Pilesjo, Petter
    Mansourian, Ali
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (03)