A generalization of Ostrowski inequality on time scales for k points

被引:31
|
作者
Liu, Wenjun [1 ]
Quoc-Anh Ngo [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Vietnam Natl Univ, Coll Sci, Dept Math, Hanoi, Vietnam
关键词
Ostrowski inequality; time scales; simpson inequality; trapezoid inequality; mid-point inequality;
D O I
10.1016/j.amc.2008.05.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first generalize the Ostrowski inequality on time scales for k points and then unify corresponding continuous and discrete versions. We also point out some particular Ostrowski type inequalities on time scales as special cases. (C) 2008 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:754 / 760
页数:7
相关论文
共 50 条
  • [21] Generalized Ostrowski-Grüss Like Inequality on Time Scales
    Mehmood, Faraz
    Khan, Asif Raza
    Shaikh, Muhammad Awais
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (04): : 191 - 203
  • [22] Generalization of Ostrowski's theorem on fixed points
    Argyros, I.K.
    Applied Mathematics Letters, 12 (06): : 77 - 79
  • [23] A generalization of Ostrowski's theorem on fixed points
    Argyros, IK
    APPLIED MATHEMATICS LETTERS, 1999, 12 (06) : 77 - 79
  • [24] GENERALIZATION OF TWO-POINT OSTROWSKI'S INEQUALITY
    Alomari, Mohammad W.
    Irshad, Nazia
    Khan, Asif R.
    Shaikh, Muhammad Awais
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1481 - 1509
  • [25] A note to Ujevic's generalization of Ostrowski's inequality
    Wu, QB
    Yang, SJ
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 657 - 665
  • [26] FUNCTIONAL GENERALIZATION OF OSTROWSKI INEQUALITY VIA MONTGOMERY IDENTITY
    Dragomir, S. S.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2015, 84 (01): : 63 - 78
  • [28] A generalization of the companion of Ostrowski-like inequality and applications
    Liu, Wenjun
    Park, Jaekeun
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 273 - 278
  • [29] ON FUNCTIONAL GENERALIZATION OF OSTROWSKI INEQUALITY FOR CONFORMABLE FRACTIONAL INTEGRALS
    Tunc, T.
    Budak, H.
    Sarikaya, M. Z.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2018, 8 (02): : 495 - 508
  • [30] A generalization of Ostrowski's inequality and applications in numerical integration
    Ujevic, N
    APPLIED MATHEMATICS LETTERS, 2004, 17 (02) : 133 - 137