A generalization of Ostrowski's theorem on fixed points

被引:6
|
作者
Argyros, IK [1 ]
机构
[1] Cameron Univ, Dept Math, Lawton, OK 73505 USA
关键词
Banach space; fixed point; spectral radius; contraction mapping principle;
D O I
10.1016/S0893-9659(99)00082-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we generalize a theorem on fixed points due to Ostrowski, using the spectral radius formula. The theorem proved here deals with the following question. Given that an operator has a fixed point, when is it true that iterates converge to the fixed point? (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:77 / 79
页数:3
相关论文
共 50 条
  • [1] Generalization of Ostrowski's theorem on fixed points
    Argyros, I.K.
    [J]. Applied Mathematics Letters, 12 (06): : 77 - 79
  • [2] A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers
    Burger, Edward B.
    Clyde, David C.
    Colbert, Cory H.
    Shin, Gea Hyun
    Wang, Zhaoning
    [J]. ACTA ARITHMETICA, 2012, 153 (03) : 217 - 249
  • [4] A Generalization of Kannan's Fixed Point Theorem
    Enjouji, Yusuke
    Nakanishi, Masato
    Suzuki, Tomonari
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2009, : 1 - 10
  • [5] A Generalization of Nadler's Fixed Point Theorem
    Popescu, Ovidiu
    Stan, Gabriel
    [J]. RESULTS IN MATHEMATICS, 2017, 72 (03) : 1525 - 1534
  • [6] A Generalization of Kannan's Fixed Point Theorem
    Yusuke Enjouji
    Masato Nakanishi
    Tomonari Suzuki
    [J]. Fixed Point Theory and Applications, 2009
  • [7] A Generalization of Nadler’s Fixed Point Theorem
    Ovidiu Popescu
    Gabriel Stan
    [J]. Results in Mathematics, 2017, 72 : 1525 - 1534
  • [9] A generalization of Ostrowski inequality on time scales for k points
    Liu, Wenjun
    Quoc-Anh Ngo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 754 - 760
  • [10] A generalization of Browder's fixed point theorem with applications
    Zhang Shisheng
    Zhang Xian
    [J]. Applied Mathematics and Mechanics, 1999, 20 (9) : 943 - 951