A generalization of Ostrowski inequality on time scales for k points

被引:31
|
作者
Liu, Wenjun [1 ]
Quoc-Anh Ngo [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Vietnam Natl Univ, Coll Sci, Dept Math, Hanoi, Vietnam
关键词
Ostrowski inequality; time scales; simpson inequality; trapezoid inequality; mid-point inequality;
D O I
10.1016/j.amc.2008.05.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we first generalize the Ostrowski inequality on time scales for k points and then unify corresponding continuous and discrete versions. We also point out some particular Ostrowski type inequalities on time scales as special cases. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:754 / 760
页数:7
相关论文
共 50 条
  • [1] A GENERALIZATION OF OSTROWSKI TYPE INEQUALITY ON TIME SCALES WITH k POINTS
    Xu, Gaopeng
    Fang, Zhong Bo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 41 - 48
  • [2] A new generalization of the Ostrowski inequality and Ostrowski type inequality for double integrals on time scales
    Tuna, A.
    Kutukcu, S.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (06) : 1024 - 1039
  • [3] A NEW GENERALIZATION OF OSTROWSKI TYPE INEQUALITY ON TIME SCALES
    Liu, Wenjun
    Ngo, Quoc-Anh
    Chen, Wenbing
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 101 - 114
  • [4] GENERALIZATION OF OSTROWSKI KIND INEQUALITY FOR DOUBLE INTEGRALS ON TIME SCALES
    Nwaeze, Eze R.
    Kermausuor, Seth
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (04): : 35 - 50
  • [5] Ostrowski's inequality on time scales
    Yeh, Cheh-Chih
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 404 - 409
  • [6] A Perturbed Ostrowski-Type Inequality on Time Scales for k Points for Functions Whose Second Derivatives Are Bounded
    Liu, Wenjun
    Quoc Anh Ngo
    Chen, Wenbing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
  • [7] Generalization of Ostrowski and Ostrowski-Gruss type inequalities on time scales
    Tuna, Adnan
    Daghan, Durmus
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (03) : 803 - 811
  • [8] A NEW OSTROWSKI TYPE INEQUALITY ON TIME SCALES
    Xu, Gaopeng
    Fang, Zhong Bo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 751 - 760
  • [9] A PARAMETER-BASED OSTROWSKI TYPE INEQUALITY ON TIME SCALES WITH k POINTS FOR FUNCTIONS HAVING BOUNDED SECOND DERIVATIVES
    Kermausuor, Seth
    Nwaeze, Eze R.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (04): : 1159 - 1172
  • [10] Ostrowski Type Inequality for Double Integrals on Time Scales
    Ozkan, Umut Mutlu
    Yildirim, Hueseyin
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (01) : 283 - 288